UNIT-5
TASK
COMMUNICATION

CONTENTS

5.1. TASK COMMUNICATION
a) Shared Memory
b) Message passing
c) Remote procedure call(RPC) and
Sockets

5.2. TASK SYNCHRONISATION
a) Task communication/ synchronisation
Issues
b) Task synchronisation techniques
c) Device drivers
d) How to choose an RTOS

5.1. TASK COMMUNICATION

»Ina multitasking system, multiple
tasks/processes run concurrently(pseudo
parallelism) and each process may or may not
interact between.

» Based on degree of interaction, the processes
running on an OS are classified as,

i) Co-operating process: In this model, one
process requires the inputs from other
processes to complete its execution

i) Competing process: it do not share anything
among themselves but they share the system
resources

v’ Co-operating processes exchanges information
and communicate through the following
methods:

i) Co-operation through sharing: The co-
operating process exchange data through
some shared resources.

i) Co-operation through communication: no
data is shared between the processes. But
they communicate for synchronisation

*The mechanism through which
processes/tasks communicate each other is

known as inter process/ Task communication
(IPC)

**|IPC is essential for process co-ordination.

**The various types of IPC mechanisms adopted
by process are kernel(OS) dependent.

*Some of the important IPC mechanisms
adopted by various kernel are: Shared
memory(pipes), message passing(Message
gueue, mailbox, Signalling), RPC

5.1(a). SHARED MEMORY

**Processes share some area of the memory to
communicate among them

Process 1 Shared memory data Process 2

*Information to be communicated by the
process is written to the shared memory area

*Other processes which require this
information can read the same from the
shared memory area.

*The implementation of shared memory
concept is kernel dependent.

* Different mechanisms are adopted by
different kernels for implementing this shared
memory concept. Namely

a) pipes
b) Memory mapped objects

a) Pipes

‘pipe’ is a section of the shared memory used
by processes for communicating

Pipes follow the client-server architecture

A process which creates a pipe is known as a
pipe server and a process which connects to a
pipe is known as pipe client

a pipe can be considered as a conduitfor
information flow and has two conceptual
ends

» |t can be unidirectional, allowing information flow
in one direction or bidirectional allowing bi-
directional information flow.

» A unidirectional pipe allows the process
connecting at one end of the pipe to write the
pipe and the process connected at the other end
of the pipe to read the data.

» Whereas a bi-directional pipe allows both reading
and writing at one end

» The unidirectional pipe can be visualised as

Process 2 _

Process 1 .
Pipe (named/un-named)
Write Read

The implementation of ‘pipes’is also OS
dependent

Microsoft windows Desktop OS supports two
types of ‘pipes’ for IPC. They are,

i) Anonymous pipes (Unidirectional)
ii) Named pipes(uni or bi-directional)

b) Memory mapped objects

» Memory mapped object is a shared memory
technique adopted by certain RTOS for
allocating a shared block of memory which
can be accessed by multiple process
simultaneously

> In this approach, a mapping object is created
and physical storage for it is reserved and

committed

5.2(b). Message passing

» Message passing is an (a)synchronous
information exchange mechanism used for inter
process/thread communication

» The major difference between shared memory
and message passing technique is that, though
shared memory lots of data can be shared
whereas only limited amount of info/data is
passed through the message passing

» Also message passing is relatively fast

» Message passing operation between the
processes is classified into

a) Message queue b)mailbox c)Signalling

a) Message queue

» Usually the process which wants to talk to
another process posts the message to a First-
In-First-Out queue is called ‘message queue’,
which stores the messages temporarily in a
system defined memory to pass it to desired
process.

» Messages are send and received through
SEND and RECEIVE methods.

» Send and Receive is also OS kernel dependent.

MESSAGE QUEUE

PROCESS 2

b) mailbox

» Mailbox is an alternate form of ‘message
gueues’ and it is used in certain RTOS for IPC

» Mailbox for IPC in RTOS is usually used for one
way messaging.

»The task/thread which wants to send a
message to other task/threads creates a
mailbox for a posting the messages.

> Mailbox server---> taks which are send
message

> Mailbox client --- > tasks which are receive
message.

c) Signalling

» Signalling is a primitive way of
communication between processes/threads

»Signals are used for asynchronous
notifications where one process/thread fires a
signal, indicating the occurence of a scenario
which the other process(es)/Thread(s) is
waiting

» Signals are not queued and they do not carry
any data.

5.1(c). RPC and SOCKETS

» RPC is the IPC mechanism used by a process to
call a procedure of another process running
on the same CPU or on the different CPU
which is interconnected in a network.

» RPC is mainly used for distributed applications
like client-server applications.

CPU CPU

PROCESS

PROCESS
PROCEDURE

Processes running on different CPUs Which are Networked

PROCESS 1

CPU

PROCESS 2

PROCEDURE

Processes running on the CPU

5.2. TASK SYNCHRONISATION

> In a multitasking environment, multiple
processes run concurrently and share the
system resources.

> Each process has its own boundary wall
and they communicate with each other with
different IPC mechanisms including shared
memory and variables

> Imagine a situation where two processes
try to access a shared memory area where
one process tries to write when the other
process is trying to read from this memory

» What could be the result in these
scenarios? Obviously unexpected results.

> How these issues can be addressed? The
solution is, make each process aware of the
access of shared resource either directly or
indirectly.

“ The act of making processes aware of the
access of shared resources by each process to
avoid conflicts is knows as, “TASK
SYCNCHRONIZATION” *

5.2(a). Task sychronisation/communication
Issues

a) Racing: Racing or Race condition is the
situation in which multiple processes
compete(Race) each other to access and
manipulate shared data concurrently.

b) Deadlock: it is the condition in which a
process is waiting for a resource held by
another process which is waiting for resource
held by the first process

Deadlock Handling:

lgnore deadlocks

Detect and Recover

Avoid deadlocks

Prevent Deadlocks

C) Dining Philosophers problem

d) producer-consumer/ Bounded Buffer Problem

e) Readers-Writers Problem

f) Priority inversion

5.2(b). Task synchronisation Techniques

a) Mutual Exclusion through Busy waiting/spin
lock
b) Mutual Exclusion through sleep & wakeup
i) Semaphore
ii) Binary semaphore (Mutex)
iii) Critical section objects

iv) Events

5.3. DEVICE DRIVERS

> Device driver is a piece of software that acts
as a bridge between the operating system and
the hardware.

> All the device related access should flow
through the OS kernel and the OS kernel routes it
to the concerned hardware peripheral.

> OS provides interfaces in the form of
Application Programming Inteface (API) for
accessing the hardware.

5.4. How to choose RTOS

5.4(a) Functional Requirements:
i) Processor support
i) Memory requirements
iii) Real-time concepts
iv) Kernel and interrupt latency
v) |IPCand task synchronisation
vi) Modularisation support
vii) Support for networking and communication
viii) Development Language support

5.4(b) Non-functional Requirements

i) Custom developed or Off the shelf

ii) Cost

iii)Development and debugging tools availability
iv)Ease of erase

v) After sales

