
UNIT-5
TASK

COMMUNICATION

CONTENTS

5.1. TASK COMMUNICATION
a) Shared Memory
b) Message passing
c) Remote procedure call(RPC) and

Sockets
5.2. TASK SYNCHRONISATION

a) Task communication/ synchronisation
issues

b) Task synchronisation techniques
c) Device drivers
d) How to choose an RTOS

5.1. TASK COMMUNICATION
In a multitasking system, multiple

tasks/processes run concurrently(pseudo
parallelism) and each process may or may not
interact between.

Based on degree of interaction, the processes
running on an OS are classified as,

i) Co-operating process: In this model, one
process requires the inputs from other
processes to complete its execution

ii) Competing process: it do not share anything
among themselves but they share the system
resources

Co-operating processes exchanges information
and communicate through the following
methods:

i) Co-operation through sharing: The co-
operating process exchange data through
some shared resources.

ii) Co-operation through communication: no
data is shared between the processes. But
they communicate for synchronisation

The mechanism through which
processes/tasks communicate each other is
known as inter process/ Task communication
(IPC)

IPC is essential for process co-ordination.

The various types of IPC mechanisms adopted
by process are kernel(OS) dependent.

Some of the important IPC mechanisms
adopted by various kernel are: Shared
memory(pipes), message passing(Message
queue, mailbox, Signalling), RPC

5.1(a). SHARED MEMORY

Processes share some area of the memory to
communicate among them

Information to be communicated by the
process is written to the shared memory area

Other processes which require this
information can read the same from the
shared memory area.

The implementation of shared memory
concept is kernel dependent.

Process 1 Shared memory data Process 2

• Different mechanisms are adopted by
different kernels for implementing this shared
memory concept. Namely

a) pipes

b) Memory mapped objects

a) Pipes

• ‘pipe’ is a section of the shared memory used
by processes for communicating

• Pipes follow the client-server architecture

• A process which creates a pipe is known as a
pipe server and a process which connects to a
pipe is known as pipe client

• a pipe can be considered as a conduitfor
information flow and has two conceptual
ends

 It can be unidirectional, allowing information flow
in one direction or bidirectional allowing bi-
directional information flow.

A unidirectional pipe allows the process
connecting at one end of the pipe to write the
pipe and the process connected at the other end
of the pipe to read the data.

Whereas a bi-directional pipe allows both reading
and writing at one end

The unidirectional pipe can be visualised as

The implementation of ‘pipes’is also OS
dependent

Microsoft windows Desktop OS supports two
types of ‘pipes’ for IPC. They are,

i) Anonymous pipes (Unidirectional)

ii) Named pipes(uni or bi-directional)

Pipe (named/un-named)Process 1
Write

Process 2
Read

b) Memory mapped objects

Memory mapped object is a shared memory
technique adopted by certain RTOS for
allocating a shared block of memory which
can be accessed by multiple process
simultaneously

In this approach, a mapping object is created
and physical storage for it is reserved and
committed

5.2(b). Message passing
Message passing is an (a)synchronous

information exchange mechanism used for inter
process/thread communication

The major difference between shared memory
and message passing technique is that, though
shared memory lots of data can be shared
whereas only limited amount of info/data is
passed through the message passing

Also message passing is relatively fast

Message passing operation between the
processes is classified into

a) Message queue b)mailbox c)Signalling

a) Message queue
Usually the process which wants to talk to

another process posts the message to a First-
In-First-Out queue is called ‘message queue’,
which stores the messages temporarily in a
system defined memory to pass it to desired
process.

Messages are send and received through
SEND and RECEIVE methods.

Send and Receive is also OS kernel dependent.

MESSAGE QUEUE

PROCESS 1 PROCESS 2

b) mailbox
Mailbox is an alternate form of ‘message
queues’ and it is used in certain RTOS for IPC

Mailbox for IPC in RTOS is usually used for one
way messaging.

The task/thread which wants to send a
message to other task/threads creates a
mailbox for a posting the messages.

Mailbox server---> taks which are send
message

Mailbox client --- > tasks which are receive
message.

MAILBOX

TASK 2 TASK 4

TASK 3

TASK 1

c) Signalling

Signalling is a primitive way of
communication between processes/threads

Signals are used for asynchronous
notifications where one process/thread fires a
signal, indicating the occurence of a scenario
which the other process(es)/Thread(s) is
waiting

Signals are not queued and they do not carry
any data.

5.1(c). RPC and SOCKETS

RPC is the IPC mechanism used by a process to
call a procedure of another process running
on the same CPU or on the different CPU
which is interconnected in a network.

RPC is mainly used for distributed applications
like client-server applications.

Processes running on different CPUs Which are Networked

PROCESS

CPU

PROCEDURE

CPU

PROCESS
NETWORK

TCP/IP or UDP

Over socket

Processes running on the CPU

PROCEDURE

PROCESS 1 PROCESS 2

CPU

5.2. TASK SYNCHRONISATION

 In a multitasking environment, multiple
processes run concurrently and share the
system resources.

 Each process has its own boundary wall
and they communicate with each other with
different IPC mechanisms including shared
memory and variables

 Imagine a situation where two processes
try to access a shared memory area where
one process tries to write when the other
process is trying to read from this memory

 What could be the result in these
scenarios? Obviously unexpected results.

 How these issues can be addressed? The
solution is, make each process aware of the
access of shared resource either directly or
indirectly.

‘ The act of making processes aware of the
access of shared resources by each process to
avoid conflicts is knows as, “TASK
SYCNCHRONIZATION” ‘

5.2(a). Task sychronisation/communication
issues

a) Racing: Racing or Race condition is the
situation in which multiple processes
compete(Race) each other to access and
manipulate shared data concurrently.

b) Deadlock: it is the condition in which a
process is waiting for a resource held by
another process which is waiting for resource
held by the first process

Deadlock Handling:

Ignore deadlocks

Detect and Recover

Avoid deadlocks

Prevent Deadlocks

C) Dining Philosophers problem

d) producer-consumer/ Bounded Buffer Problem

e) Readers-Writers Problem

f) Priority inversion

5.2(b). Task synchronisation Techniques

a) Mutual Exclusion through Busy waiting/spin

lock

b) Mutual Exclusion through sleep & wakeup

i) Semaphore

ii) Binary semaphore (Mutex)

iii) Critical section objects

iv) Events

5.3. DEVICE DRIVERS

 Device driver is a piece of software that acts
as a bridge between the operating system and
the hardware.

 All the device related access should flow
through the OS kernel and the OS kernel routes it
to the concerned hardware peripheral.

 OS provides interfaces in the form of
Application Programming Inteface (API) for
accessing the hardware.

5.4. How to choose RTOS

5.4(a) Functional Requirements:

i) Processor support

ii) Memory requirements

iii) Real-time concepts

iv) Kernel and interrupt latency

v) IPC and task synchronisation

vi) Modularisation support

vii) Support for networking and communication

viii) Development Language support

5.4(b) Non-functional Requirements

i) Custom developed or Off the shelf

ii) Cost

iii)Development and debugging tools availability

iv)Ease of erase

v) After sales

