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UNIT — |

INTRODUCTION TO VERILOG

1. VERILOG AS HDL

Verilog has a variety of constructs as part of it. All are aimed at providing a functionally
tested and a verified design description for the target FPGA or ASIC. The language has a dual
function — one fulfilling the need for a design description and the other fulfilling the need for
verifying the design for functionality and timing constraints like propagation delay, critical path delay,
slack, setup, and hold times.

History:

Beginning

Verilog was one of the first modern hardware description languages to be invented. It was
created by Prabhu Goel and Phil Moorby during the winter of 1983/1984. The wording for this
process was "Automated Integrated Design Systems" (later renamed to Gateway Design Automation
in 1985) as a hardware modeling language. Gateway Design Automation was purchased by Cadence
Design Systems in 1990. Cadence now has full proprietary rights to Gateway's Verilog and the
Verilog-XL, the HDL-simulator that would become the de facto standard (of Verilog logic simulators)
for the next decade. Originally, Verilog was intended to describe and allow simulation; only
afterwards was support for synthesis added.

Verilog-95

With the increasing success of VHDL at the time, Cadence decided to make the language
available for open standardization. Cadence transferred Verilog into the public domain under the
Open Verilog International (OV1) (now known as Accellera) organization. Verilog was later
submitted to IEEE and became IEEE Standard 1364-1995, commonly referred to as Verilog-95.

In the same time frame Cadence initiated the creation of Verilog-A to put standards support
behind its analog simulator Spectre. Verilog-A was never intended to be a standalone language and is
a subset of Verilog-AMS which encompassed Verilog-95.

Verilog 2001
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Extensions to Verilog-95 were submitted back to IEEE to cover the deficiencies that users
had found in the original Verilog standard. These extensions became IEEE Standard 1364-2001
known as Verilog-2001.

Verilog-2001 is a significant upgrade from Verilog-95. First, it adds explicit support for (2's
complement) signed nets and variables. Previously, code authors had to perform signed operations
using awkward bit-level manipulations (for example, the carry-out bit of a simple 8-bit addition
required an explicit description of the Boolean algebra to determine its correct value). The same
function under Verilog-2001 can be more succinctly described by one of the built-in operators: +, -, /,
*, >>>, A generate/end generate construct (similar to VHDL's generate/end generate) allows Verilog-
2001 to control instance and statement instantiation through normal decision operators (case/if/else).
Using generate/end generate, Verilog-2001 can instantiate an array of instances, with control over the
connectivity of the individual instances. File I/O has been improved by several new system tasks. And
finally, a few syntax additions were introduced to improve code readability (e.g. always @*, named
parameter override, C-style function/task/module header declaration).

Verilog-2001 is the dominant flavor of Verilog supported by the majority of commercial EDA
software packages.

Verilog 2005

Not to be confused with System Verilog, Verilog 2005 (IEEE Standard 1364-2005) consists
of minor corrections, spec clarifications, and a few new language features (such as the uwire
keyword).

A separate part of the Verilog standard, Verilog-AMS, attempts to integrate analog and mixed
signal modeling with traditional Verilog.

System Verilog

System Verilog is a superset of Verilog-2005, with many new features and capabilities to aid
design verification and design modeling. As of 2009, the System Verilog and Verilog language
standards were merged into System Verilog 2009 (IEEE Standard 1800-2009).

The advent of hardware verification languages such as Open Vera, and Verisity'se language
encouraged the development of Super log by Co-Design Automation Inc. Co-Design Automation Inc
was later purchased by Synopsys. The foundations of Super log and Vera were donated to Accellera,
which later became the IEEE standard P1800-2005: System Verilog.

2. LEVELS OF DESIGN DESCRIPTION

The components of the target design can be described at different levels with the help of the
constructs in Verilog.

2.1 Circuit Level
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At the circuit level, a switch is the basic element with which digital circuits are built.
Switches can be combined to form inverters and other gates at the next higher level of abstraction.
Verilog has the basic MOS switches built into its constructs, which can be used to build basic circuits
like inverters, basic logic gates, simple 1-bit dynamic and static memories. They can be used to build
up larger designs to simulate at the circuit level, to design performance critical circuits. Fig.1 shows
the circuit of an inverter suitable for description with the switch level constructs of Verilog.

2.2 Gate Level

At the next higher level of abstraction, design is carried out in terms of basic gates. All the
basic gates are available as ready modules called “Primitives.” Each such primitive is defined in
terms of its inputs and outputs. Primitives can be incorporated into design descriptions directly. Just
as full physical hardware can be built using gates, the primitives can be used repeatedly and
judiciously to build larger systems. Fig.2 shows an AND gate suitable for description using the gate
primitive of Verilog. The gate level modeling or structural modeling as it is sometimes called is akin
to building a digital circuit on a bread board, or on a PCB. One should know the structure of the
design to build the model here. One can also build hierarchical circuits at this level. However, beyond
20 to 30 of such gate primitives in a circuit, the design description becomes unwieldy; testing and
debugging become laborious.

e 4 ‘I;‘-.L
[ I
— o,
[ ] Q: 1
1 I
- 2 a e—
C
] h *—
»
it
h c=a.b
._| Q.
in
_a— Supply0
Fig.1 A simple Inverter circuit at the Fig.2 A simple AND gate represented
switch level at the gate level
2.3 Data Flow

Data flow is the next higher level of abstraction. All possible operations on signals and
variables are represented here in terms of assignments. All logic and algebraic operations are
accommodated. The assignments define the continuous functioning of the concerned block. At the
data flow level, signals are assigned through the data manipulating equations. All such assignments
are concurrent in nature. The design descriptions are more compact than those at the gate level. Fig.3
shows an A-O-I relationship suitable for description with the Verilog constructs at the data flow level.

2.4 Behavioral Level

Behavioral level constitutes the highest level of design description; it is essentially at the
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system level itself. With the assignment possibilities, looping constructs and conditional branching
possible, the design description essentially looks like a “C” program. The statements involved are
“dense” in function. Compactness and the comprehensive nature of the design description make the
development process fast and efficient. Fig. 4 shows an A-O-1 gate expressed in pseudo code suitable
for description with the behavioral level constructs of Verilog.

If (a, b, ¢ or d changes)

e=ab+cd Compute e as

e=ab+cd
Fig.3 An A-O-I gate represented as a data flow Fig.4 An A-O-I gate in pseudo code at
type of relation behavior level

2.5 The Overall Design Structure in Verilog

The possibilities of design description statements and assignments at different levels
necessitate their accommodation in a mixed mode. In fact the design statements coexisting in a
seamless manner within a design module is a significant characteristic of Verilog. Thus Verilog
facilitates the mixing of the above-mentioned levels of design. A design built at data flow level can be
instantiated to form a structural mode design. Data flow assignments can be incorporated in designs
which are basically at behavioral level.

3. CONCURRENCY

In an electronic circuit all the units are to be active and functioning concurrently. The
voltages and currents in the different elements in the circuit can change simultaneously. In
turn the logic levels too can change. Simulation of such a circuit in an HDL calls for
concurrency of operation. A number of activities - may be spread over different modules —
are to be run concurrently here. Verilog simulators are built to simulate concurrency. (This
is in contrast to programs in the normal languages like C where execution is sequential.)
Concurrency is achieved by proceeding with simulation in equal time steps. The time step is
kept small enough to be negligible compared with the propagation delay values. All the
activities scheduled at one time step are completed and then the simulator advances to the
next time step and so on. The time step values refer to simulation time and not real time.
One can redefine timescales to suit technology as and when necessary and carry out test
runs.

In some cases the circuit itself may demand sequential operation as with data transfer
and memory-based operations. Only in such cases sequential operation is ensured by the
appropriate usage of sequential constructs from Verilog HDL.

4. SIMULATION AND SYNTHESIS

The design that is specified and entered as described earlier is simulated for
functionality and fully debugged. Translation of the debugged design into the corresponding
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hardware circuit (using an FPGA or an ASIC) is called "synthesis." The tools available for
synthesis relate more easily with the gate level and data flow level modules [Smith MJ]. The
circuits realized from them are essentially direct translations of functions into circuit
elements. In contrast many of the behavioral level constructs are not directly synthesizable;
even if synthesized they are likely to yield relatively redundant or wrong hardware. The way
out is to take the behavioral level modules and redo each of them at lower levels. The process
is carried out successively with each of the behavioral level modules until practically the full
design is available as a pack of modules at gate and data flow levels (more commonly called
the "RTL level™).

5. FUNCTIONAL VERIFICATION

Testing is an essential ingredient of the VLSI design process as with any hardware
circuit. It has two dimensions to it - functional tests and timing tests. Both can be carried out
with Verilog. Often testing or functional verification is carried out by setting up a "test
bench" for the design. The test bench will have the design instantiated in it; it will generate
necessary test signals and apply them to the instantiated design. The outputs from the design
are brought back to the test bench for further analysis. The input signal combinations,
waveforms and sequences required for testing are all to be decided in advance and the test
bench configured based on the same.

The test benches are mostly done at the behavioral level. The constructs there are
flexible enough to allow all types of test signals to be generated.

In the process of testing a module, one may have to access variables buried inside
other modules instantiated within the master module. Such variables can be accessed through
suitable hierarchical addressing.

6. SYSTEM TASKS

A number of system tasks are available in Verilog. Though used in a design
description, they are not part of it. Some tasks facilitate control and flow of the testing
process. The values of signals in a module can be displayed in the course of simulation. The
tasks available for the purpose display them in desired formats. Reading data from specified
files into a module and writing back into files are also possible through other tasks.
Timescale can be changed prior to simulation with the help of specific tasks for the purpose.

A set of system functions add to the flexibility of test benches: They are of three
categories:

- Functions that keep track of the progress of simulation time
- Functions to convert data or values of variables from one format to another
- Functions to generate random numbers with specific distributions.

There are other numerous system tasks and functions associated with file operations,
PLAs, etc.
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7. PROGRAMMING LANGUAGE INTERFACE (PLI)

PLI provides an active interface to a compiled Verilog module. The interface adds a
new dimension to working with Verilog routines from a C platform. The key functions of the
interface are as follows:

- One can read data from a file and pass it to a Verilog module as input. Such data can be
test vectors or other input data to the module. Similarly, variables in VVerilog modules can
be accessed and their values written to output devices.

- Delay values, logic values, etc., within a module can be accessed and altered.

- Blocks written in C language can be linked to Verilog modules.

8. MODULE

Any Verilog program begins with a keyword - called a "'module.” A module is the
name given to any system considering it as a black box with input and output terminals as
shown in Fig.5. The terminals of the module are referred to as 'ports'. The ports attached to a
module can be of three types:

- input ports through which one gets entry into the module; they signify the input signal
terminals of the module.

- output ports through which one exits the module; these signify the output signal
terminals of the module.

- inout ports: These represent ports through which one gets entity into the module or exits
the module; these are terminals through which signals are input to the module sometimes;
at some other times signals are output from the module through these.

Whether a module has any of the above ports and how many of each type are present
depend solely on the functional nature of the module. Thus one module may not have any
port at all, another may have only input ports, while a third may have only output ports, and
SO on.

All the constructs in Verilog are centered on the module. They define ways of
building up, accessing, and using modules. The structure of modules and the mode of
invoking them in a design are discussed here.

A module comprises a number of "lexical tokens" arranged according to some
predefined order. The possible tokens are of seven categories:

White spaces
Comments
Operators
Numbers
Strings
Identifiers
Keywords
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inout port

h 4 Y
output port | i input port

» module

Fig.5 Representation of a module

The rules constraining the tokens and their sequencing will be dealt with as we
progress. For the present let us consider modules. In Verilog any program which forms a
design description is a "module.” Any program written to test a design description is also a
"module.” The latter are often called as "stimulus modules” or "“test benches.” A module used
to do simulation has the form shown in Fig.6. Verilog takes the active statements appearing
between the ""module™ statement and the *endmodule’ statement and interprets all of them
together as forming the body of the module. Whenever a module is invoked for testing or for
incorporation into a bigger design module, the name of the module (“test” here) is used to
identify it for the purpose.

i Signifies declaration of a module

o i | _W Name assigned to the module

module fest S

l __ The semicolon ;' signifies termination of a
statement ;ql— module statement
statement2 ;

l endmodule 4—'— Signifies termination of a module

o oas ss s el

Individual statements within the module

Fig.6 Structure of a typical simulation module

A digression into design using SSI ICs is in order here. Consider the IC 7430, an eight

Il B.Tech—1 SEM 17 DDTV




input NAND gate. In any design using it, the IC can be looked up on as a black box with
eight input leads and one output lead (Fig.7a). Three aspects characterize the IC - its function,
its input leads, and its output lead. Other 1Cs may have more output leads. A NAND gate
module is defined in an analogous mariner in terms of its function, input leads and the output
lead. The module used to describe the circuit here also follows the earlier format; that is, the
"module™ statement signifies the beginning of the module, the “endmodule™ statement
signifies the end of the module. However, the initial statement **module’ has to be more
elaborate with the input and the output ports forming part of it(fig.7b).

I

|
J 0
13 T
NAND gate

Fig. 7a Eight input NAND gate

Signifies declaration of a moduleikeyword)
—— Name assigned to the module

Signifies the set of [Y'O leads to the module

A4 Y r - ]
module nand gate (O, 11, 12, 13, 4, 15, 16, 17, 18) ;

A
[:statemenﬂ _—
statement2 ; «

endmodule

-

Signifies termination of a module
(keywaord)

Individual statements within the module

The semi-colon ;' signifies termination of a module statement —
Fig. 7b Eight input NAND gate (Structure of the gate module)

The same type of IC - 7430 - may be repeatedly used in a circuit. Each time it is used,
a different name is assigned to it in the design sheet. Part of such a typical design sheet will
look as in Fig.8. The associated table (Table 1) allows us to identify each type of IC to be
used and put in its proper place. An automated design description can use a module defined
above, repeatedly in a number of places as in the circuit of Fig.8.
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I
I1 IC2 —e
ol
IC1 3
I8 o—l_ IC3 —we
ol
Ii
Fig.8 part of the circuit diagram of a digital circuit
IC No IC1 IC2 IC3 1C9
IC Type 7430 7430 7405

Table 1 Partial list of IC numbers and their types

Each such use is an "instantiation." A typical instantiation of the module defined

above has the form shown in Fig.9.

Name assigned to the
instantiation

Name of the output lead

Names of the input leads

vy vV o . X
A typical instantiation of the

nand_gateic1 (b1, a1, a2, ..a8); € NAND eate in Fie 2

Another instantiation of the NAND
gate in Fig.2

nand gateic2(b2, c1,c2, ..c8); €«—

Fig.9 Instantiations of module nand_gate in another module

The following observations are in order here:

The designer has defined a specific function within a module; the module is
assigned the name "nand_gate."

The nand_gate can be invoked (instantiated) by him in a design as many times as
desired.

Each instantiation has to be assigned a separate identifier name by him (called
"IC1", "IC2" etc.).
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e As part of the instantiation declaration, the input and output terminals are to be
defined. The convention followed is to stick to the same order as in the module
declaration. It is further illustrated in Fig.9.

Some modules may have a large number of ports. Sticking to the order of the ports in
an instantiation is likely to cause (human) errors. An alternative (and sometimes more
convenient) form of instantiation is also possible - shown in Fig.10. The terminal
identifications are explicit (though elaborate) here. Further one need not stick to the order of
the ports as they appear in the module definition. With such a form of port assignments, the
possibility of errors is considerably reduced.

The following aspects of the modules and their instantiation are noteworthy:

« Each module can be defined only once.

« Module definitions are to be done independently. One module cannot be defined inside
another - they cannot be nested.

« Any module can be instantiated inside another any number of times. Each instantiation
has to be done with a separate name assigned to it.

— o
11

nand gate module O b

IC1

af

nand_gate ic1(O(b), 18(a8), ... 11(a1)); (b)

Fig.10 a) A typical circuit block b) Its instantiation

9. SIMULATION AND SYNTHESIS TOOLS

A variety of Software tools related to VLSI design is available. We discuss here two
of them directly relevant to us — Modelsim and Leonardo Spectrum of Mentor Graphics.
Modelsim has been used to simulate the designs. Simulation results presented for the variety
of examples discussed in the book have been obtained using it. Leonardo Spectrum has been
used to obtain the synthesized circuits presented. We would like to draw the attention of the
readers to the following in this context:

. Only the essential aspects of the tools are presented - those essential for the progress
of the book.
. For more details of the tools and the variety of facilities they offer, one can refer to

the respective user manuals and the Help menus.
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. Tools from other sources are similar in essentials. Any of them can be used.
2.9.1 Use of Modelsim SE 5.5

The procedure to invoke the tool and use it is briefly described here. The tool can be
used to prepare a source file, edit and compile it, and simulate the compiled version.

Editing and Compilation

e Open the Modelsim Window. We get the following menus listed at the top.
File | Edit ‘ Design  View || Project || Run | Compare | Macro
e Click on "View." We get the following menus

All
Hide Workspace

Sources

Structure

Variables

Signals
List

Process
Wave

Data flow
Data sets
New
Other

e Click on "Source." The "Source™" window opens with the following set of menus listed
at the top

File | Edit Object | Options Window |

e Click on "File" option. We get the following options
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New
Open

Use source

Source directory

Properties

Save

Save as

Compile
Close

e Click on "New." We get the following options

VHDL

Verilog
Others

o Click on “Verilog.” A “Source_edit-new.v” opens. The Verilog design can be keyed in. It forms
the source file.

Click on “File” option. We get a pull down menu.

e Click on “Save as.” Select a Directory of your choice. Give a suitable filename with extension
“V” (Say “demo.v”). Click on “Save” and save the file. The source (design)file has been created
and saved. Now it is ready for compilation.

e Click on "Compile.” "Compile HDL Source Files" window opens. File name "demo" is
displayed. Library "Work™ is displayed. The selected file (demo.v) will be compiled and
loaded into Work. The lines of display in the main window confirm this.

e If the source file has any syntax or logical errors, compilation will not take place. The
errors will be indicated in the main window. The source file can be opened (by clicking
on the main menu) and edited. Once again compilation can be attempted. The procedure
has to be repeated iteratively until all the errors in the source file have been removed and
compilation is successfully completed.

Simulation
e In the main window click on "Design” pull down menu.

e In the options displayed, click on "Load Design." The following options are displayed at
the top

Design | VHDL | Verilog | Libraries | SDF |

e Select "Design"” and click on it. A small window appears on the screen. "Library: Work"
is displayed, implying that the working library is open. The module name "demo" is
displayed under it. In the normal course the names of all the compiled files will be listed
alphabetically one below the other. The specific file to be simulated is to be selected by
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clicking on the same.

e The "Load" button below gets highlighted. Click on it. The design gets loaded and is
ready for simulation run.

e Click the "Run" menu in the Modelsim main window. Select 100 ns runtime.

e The design runs for 100 ns (by default) and the output list appears in the main window.
The listing can be selected, copied, and pasted to another file. The simulation results for
the various examples in the book have been obtained in this manner. If necessary, the
time duration of simulation can be altered in the main window.

Observing Waveforms
Simulation results can alternately be viewed as waveforms with the following procedure:

e In the main Modelsim window click on "Signals.” The signals window opens with the
following options displayed at the top

File | Edit | View Window

e Click on the "View" pull down menu. We get the options as shown below

Wave |

List |
‘Log |

Filter

e Amongst the options available, click on "Wave." We get the following options

Selected Signals

Signals in Region

Signals in Design

e Select "Signals in Design." The "Waveform Window" opens and shows the signals in the
design. The Window has a "Run" option.

e Click on "Run" to run the design and get the waveforms displayed.
Synthesis

Conversion of the code into hardware logic and fitting it into an FPGA or ASIC to
realize the circuit is termed "Synthesis." We have used the Mentor Graphics Synthesis tool
called "Leonardo Spectrum” for the purpose. The synthesis procedure is briefly described
here:

e Double click on "Leonardo Spectrum 2000.1b."

e The Main Window named "Examplar Logic - Leonardo Spectrum Level 3"opens with a
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pull down menu as follows
File | Edit View | Tools | Window | Help |
Click on “File”. A pull down menu opens with options such as the following

New
Open

Save

Select "New." A window named "untitled" opens. We can type in a new program and
save it as a file with a name assigned to it (Say "name.v") in a directory of our choice.
The procedure is similar to that followed above to create and save a new file with
extension ".v" (signifying that it is a Verilog file). The file is now ready for synthesis.
However, it is always preferable to simulate a file and be fully satisfied with at the
simulation stage itself before synthesizing it.

Click on the "Tools" menu on the main window. A set of options appear on the screen.

Select "Quick Set up." A window of the type shown in Fig.11 appears. All the settings
necessary to complete the synthesis can be carried out with it.

Click on "Open files." Select the Verilog source file to be synthesized. It will be visible
under "Input™ in the figure.

Under "Technology" select "FPGA." Select a device of (say) Xilinx - for example,
XC4000XL. The selected Xilinx device name is displayed under 'Device'.

Select a "Clock Frequency" - say 10 MHz.

Click on the "Run Flow" button. The synthesis program runs and completes the
synthesis. Summarized results will be displayed on the screen.

If the coding is correct and synthesizable, the display "Ready" appears highlighted at the
bottom left-hand corner. If not, error details will be displayed. The program may be
rectified and synthesis attempted again. Icons for "RTL Schematic”, "Gate Level
Schematic" and "Critical Path Schematic" at the top become active.

We can click on each of them in succession. The circuit schematic can be viewed at the
RTL level or the gate level. The critical path can be viewed - it represents the path that
takes the maximum time of operation on a pin-to-pin basis. It sets the upper limit to the
speed of operation of the circuit.

The synthesized circuits shown for the different examples in the book have been obtained

in this manner. The device selected to synthesize the design, is called the "Target Device."
One can select any other suitable target device of Xilinx or other FPGA vendors like Actel,
Altera, Cypress, Lattice, Lucent, Quicklogic, etc.
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The program generates a summary of the synthesis activity and displays it as a "Sum File." It
gives a report on the utilization of the "Target Device" by the design that was synthesized. It
also generates and displays some timing information like "Critical Path Timing."

Technology Input

[] asic
FPGA

Device

[ 1

Speed grade

[ ] open files []

Working directory []

Clock Frequency[ | MHz

Run flow Help

Fig.11 The window to do the settings for synthesis
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LANGUAGE CONSTRUCTS AND CONVENTIONS

10. INTRODUCTION

The constructs and conventions make up a software language. A clear understanding
and familiarity of these is essential for the mastery of the language. Verilog has its own
constructs and conventions. In many respects they resemble those of C language

Any source file in Verilog (as with any file in any other programming language) is
made up of a number of ASCII characters. The characters are grouped into sets — referred to
as "lexical tokens." A lexical token in Verilog can be a single character or a group of
characters. Verilog has 7 types of lexical tokens — operators, keywords, identifiers, white
spaces, comments, numbers, and strings.

10.1 Case Sensitivity

Verilog is a case-sensitive language like C. Thus sense, Sense, SENSE, sENSse,...etc.,
are all treated as different entities / quantities in Verilog.

11. KEYWORDS

The keywords define the language constructs. A keyword signifies an activity to be
carried out, initiated, or terminated. As such, a programmer cannot use a keyword for any
purpose other than that it is intended for. All keywords in Verilog are in small letters and
require to be used as such (since Verilog is a case- sensitive language). All keywords appear
in the text in New Courier Bold-type letters.

Examples

module<— signifies the beginning of a module definition.
endmodule<— signifies the end of a module definition.
begin<— signifies the beginning of a block of statements.
end<— signifies the end of a block of statements.

if<— signifies a conditional activity to be checked while<— signifies a
conditional activity to be carried out.

12. IDENTIFIERS

Any program requires blocks of statements, signals, etc., to be identified with an
attached nametag. Such nametags are identifiers. It is good practice for us to use identifiers,
closely related to the significance of variable, signal, block, etc., concerned. This eases
understanding and debugging of any program.
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e.g., clock, enable, gate_1,...

There are some restrictions in assigning identifier names. All characters of the
alphabet or an underscore can be used as the first character. Subsequent characters can be of
alphanumeric type, or the underscore (_), or the dollar ($) sign - for example

name, name. Name, namel, namej, ... <- all these are allowed as identifiers

name aa<— not allowed as an identifier because of the blank ( "name" and "aa" are
interpreted as two different identifiers)

$name<— not allowed as an identifier because of the presence of "$" as the first character.
1 _name<— not allowed as an identifier, since the numeral "1" is the first character
@name<— not allowed as an identifier because of the presence of the character

A+b<— not allowed as an identifier because of the presence of the character "+".

An alternative format makes it is possible to use any of the printable ASCII characters
in an identifier. Such identifiers are called "escaped identifiers"; they have to start with the
backslash (\) character. The character set between the first backslash character and the first
white space encountered is treated as an identifier. The backslash itself is not treated as a
character of the identifier concerned.

Examples

\b=c

\control-signal

\&logic

\abc// Here the combination "abc" forms the identifier.

It is preferable to use the former type of identifiers and avoid the escaped identifiers;
they may be reserved for use in files which are available as inputs to the design from other
CAD tools.

13. WHITE SPACE CHARACTERS

Blanks (\b), tabs (\t), newlines (\n), and form feed form the white space characters in
Verilog. In any design description the white space characters are included to improve
readability. Functionally, they separate legal tokens. They are introduced between keywords,
keyword and an identifier, between two identifiers, between identifiers and operator symbols,
and so on. White space characters have significance only when they appear inside strings.

14. COMMENTS

It is a healthy practice to comment a design description liberally - as with any other
program. Comments are incorporated in two ways. A single line comment begins with "//"
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and ends with a new line - for example

module d ff (Q,dp,clk); //This is the design description of a D flip-flop.
//Here Q is the output.
/I dp is the input and clk is the clock.

One can incorporate multiline comments also without resorting to "//* at every line. For such
multiline comments "/*" signifies the beginning of a comment and ™*/" its end. All lines
appearing between these two symbol combinations are together treated as a single block
comment - for example

module d ff (Q, dp, elk);

/* This module forms the design description of a d flip-flop wherein Q is the output
of the flip-flop,

dp is the data input and elk the clock input*/
Multiline comments cannot be nested. For example, the following comment is not valid.

[*The following forms the design description of a D flip-flop /*which can be modified to
form other types of flip-flops*/ with clock and data inputs.*/

A valid alternative can be as follows: -

[*The following forms the design description of a D flip-flop (which can be modified to form
other types of flip-flops) with clock and data inputs.*/

15. NUMBERS

Frequently numbers need to be specified in a design description. Logic status of
signal lines, buses, delay values, and numbers to be loaded in registers are examples. The
numbers can be of integer type or real type.

15.1 Integer Numbers

Integers can be represented in two ways. In the first case it is a decimal number -
signed or unsigned; an unsigned number is automatically taken as a positive number. Some
examples of valid number representations of this category are given below:

2

25
253
-253

The following are invalid since non decimal representations are not permissible.
2a
B8
-2a
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-B8

Normally the number is taken as 32 bits wide. Thus all the following numbers are assigned
32 bits of width

2

25
253
-2
-25
-253

If a design description has a number specified in the form given here, the circuit
synthesizer program will assign 32 bits of width to it and to all the related circuits. Hence all
such number specifications - despite their simplicity - may be avoided in design
descriptions. Number representation in this form may preferably be restricted to test
benches.

The alternate form of number representation is more specific — though elaborate.
The number can be specified in binary, octal, decimal, or hexadecimal form. The
representation has three tokens with an optional sign preceding it. Fig.12 shows typical
number representations with the significance of each field explained separately.

T L L U AN
e S = This field signifies the value of the number. For binary
numbers the characters 0, 1, x, z can be used to form the
value.

For octal numbers the numerals 0 to 7, x, z can be used to
form the value.

For decimal numbers all the numerals, x, z can be used to
form the value.

For hex numbers all the numerals, a, b, ¢, d, e, f, x, z can be

used to form the numbers.

' This combination - the single quote character followed by b, o,
d or h - specifes the base of the number. The character
signifies binary, octal, decimal or hexadecimal base. If this
field is absent, the number is taken as a dcimal one.

» If present, the decimal number in this field signifies the bit
width of the number. If absent the width i1s assigned a default
value by the compiler.

»This field(optional) is for the sign bit. It is allowed only with
the decimal numbers. If absent, the number is taken as
positive. For a number with a negative sign the number i1s
represented in 2's complement form

Fig.12 Representation of a number in verilog
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Table 2 shows the format of specifications of the integer type numbers along with
illustrative examples.

Representation

Remarks

Both of these represent decimal numbers of unspecified size - normally

33'd33 interpreted by Verilog as 32 bit wide, i.e., 0000 0000 0000 0000 0000
0000 0010 0001
0'd439 9'D439 All these represent 3 digit decimal numbers. D & d both specify decimal
9'D4_39 numbers. (underscore) is ignored

9'pb11011 1x01

All these represent binary numbers of value 11011x01. B & b specify
binary numbers. is ignored, x signifies the concerned bit to be of

9'v11011x01
9'B11011x01 unknown value.
9'0123 9'0123 Qllz)gqelse represent 9-bit octal numbers. The binary equivalents are 001
9'01x3 9'012z !
001 010 011, 001 xxx 011,001010zzz respectively, z signifies the
'0213 An octal number of unspecified size having octal value 213.

8'ha5 8'HAS58'hAS
8'ha_5

All these are 8 bit-wide-hex numbers of hex value a5h. The equivalent
binary value is 1010 0101.

/A 11 bit number with a hex assignment. Its value is 000 1011 0000. The

11'hb0 number of bits specified is more than that indicated in the value field.
Enough zeros are padded to the left as shown.

9'hza A hex number of 9 bits. Its value is taken as zzzzz 1010.

5'hza A 5-bit hex number. Its value is taken as z 1010.

5'h7a A 5-bit hex number. Its value is taken as z 1010. *?" is another
representation for 'z\

_5'hla -3'b101 Negative numbers. Negative numbers are represented in 2's complement
form.

_4'd7 A 4 bit negative number. Its value in 2's complement form is 7. Thus the

number is actually - (16 - 7) = -9.

Observations:

Table 2 Different ways of number representations in verilog

» The characters used to specify the base number, the sign or the magnitude can be in
either case (Thus A, B, C, D, E, or F can be used in place of a, b, C, d, e, or f,
respectively, to specify the concerned hex digit. X or Z can be used in place of x or z
value, respectively).

» The single quote character in the base field has to be immediately followed by the
character representing the base. Intervening white spaces are not allowed. However, such
white spaces can precede the magnitude field.

* Negative numbers are represented in 2's complement form.
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» The question mark character - "?" - can be used in place of z. The underscore character
can be used anywhere after the first character. It adds to the readability. It is normally
ignored.

» If the number size is smaller than the size specified, the size is made up by padding O's to
the left. However, if the leftmost bit is a x or z, the same is padded to the left.

» Left truncation and right extension can often be confusing. It is preferable to specify the
numbers fully.

15.2 Real Numbers

Real numbers can be specified in decimal or scientific notation. The decimal notation
has the form

-a.b

where a, b, the negative sign, and the decimal point have the usual significance. The fieldsa
and b must be present in the number. A number can be specified in scientific notation as

4 3e2

where 4.3 is the mantissa and 2 the exponent. The decimal equivalent of this number is 430.
Other examples of numbers represented in scientific notation are —4.3e2, —4.3e—2, and
4.3e—2. The representations are common.

16. STRINGS

A string is a sequence of characters enclosed within double quotes. A string must
be contained on a single line; that is, it cannot be carried over to two lines with acarriage
return. Special characters are specified by preceding them with the "\" character. Verilog
treats a string as a sequence of ASCII characters - for example,

"This is a string"
"This string is one \t with a gap in between"

"This is called a \"'string\

When a string of ASCII characters as above is an operand in an expression, it is treated as
a binary number. This binary number is formed by replacing each ASCII character by 8 bits -
a 0 bit followed by the 7-bit ASCII equivalent - and treating the resulting binary sequence as
a single binary number. For example, the statement (with P defined as a 32-bit vector
beforehand)

P ="numb"
assigns the binary value

011011100111 0101 0110 1101 01100010
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to P (01101110, 0111 0101, 0110 1101 and 0110 0010 are the 8-bit equivalents of the letters
n, u, m, and b, respectively).

17. LOGIC VALUES

Signal lines, logic values appearing on signal lines, etc., can normally take two logic levels:
1 <— signifies the 1 or high or true level
0 <— signifies the 0 or low or false level.

e Two additional levels are also possible - designated as x and z. Here x represents an
unknown or an uninitialized value. This corresponds to the don't- care case in logic
circuits, z represents / signifies a high impedance state. This is possible when a signal line
is tri-stated or left floating. The following are noteworthy here:

e When a variable in an expression is in the z state, the effect is the same as it having z
value. But when an input to a gate is in the z state, it is equivalent to having the x value.

e The MOS switches form an exception to the above. If the input to a MOS switch is in the
z state, its output too remains at the z state.

e With a few exceptions all data types in Verilog can take on all the 4 logic values or
levels. The event is an exception to this. It cannot store any value. The trireg cannot take
on the z value. A logic state can have a "strength" associated with it. It is a quantitative
representation of the internal impedance value of the corresponding hardware circuit; a
change in the internal impedance is reflected as a corresponding change in the strength
level. Whenever the logic values from two sources are combined, there can be a conflict
and the resulting contention has to be resolved.

18. STRENGTHS

The logic levels are also associated with strengths. In many digital circuits, multiple
assignments are often combined to reduce silicon area or to reduce pin- outs. To facilitate
this, one can assign strengths to logic levels. Verilog has eight strength levels - four of these
are of the driving type, three are of capacitive type and one of the hi-Z types. Details are
given in Table 3.

When a signal line is driven simultaneously from two sources of different strength
levels, the stronger of the two prevails. A few illustrative examples are considered here.

e Ifasignal line a is driven by two sources — b at 1 level with strength **strongl**andC at
level 0 with strength "pullO™- a will take the value 1.

e If a signal linea is driven by two sources — b at 1 level with strength "'pulll**andC at
level 0 with strength *'strongO,"" a will take the value 0.

e If asignal linea is driven by two sources — b at 1 level with strength **strongl**andC at
level 0 with strength **strongO,"" a will take the value x (indeterminate).
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e If asignal linea is driven by two sources — b at 1 level with strength **weakl*andC at
level 0 with strength "*largeO," a will take the value 0.

Strength name| Strength Specification Abbreviation Element modeled
level keyword
(signifies
inverse of
source
Supply drive 7 Supplyl Sul Power supply connection
Supply0 Su0
Strong drive 6 Strongl Stl Default gate and assign
Strong0 St0 output strength
Pull drive 5 Pulll Pul Gate and assign output
Pull0 Pu0 strength
Large 4 Largel Lal Size of trireg net capacitor
capacitor Large0 La0
Weak drive 3 Weakl Wel Gate and assign output
WeakO0 We0 strength
Medium 2 Mediuml Mel Size of trireg net capacitor
capacitor MediumO MeO
Small 1 Smalll Smi Size of trireg net capacitor
capacitor Small0 SmO
High 0 Highzl Hil Tri-stated line
impedance Highz0 Hi0

Table 3 Details of strengths in verilog

19. DATATYPES

The data handled in Verilog fall into two categories:
(M Net data type

(i)  Variable data type

The two types differ in the way they are used as well as with regard to their respective
hardware structures. Data type of each variable or signal has to be declared prior to its use.
The same is valid within the concerned block or module.

19.1 Nets

A net signifies a connection from one circuit unit to another. Such a net carries the
value of the signal it is connected to and transmits to the circuit blocks connected to it. If the
driving end of a net is left floating, the net goes to the high impedance state. A net can be
specified in different ways.

wire: It represents a simple wire doing an interconnection. Only one output is connected
to a wire and is driven by that.
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tri: It represents a simple signal line as a wire. Unlike the wire, a tri can be driven by
more than one signal outputs.

Functionally, wire and tri are identical. Distinct nomenclatures are provided for the
convenience of assigning roles.

19.2 Variable Data Type

A variable is an abstraction for a storage device. It can be declared through the keywordreg
and stores the value of a logic level: 0, 1, x, or z. A net or wire connected to areg takes on the
value stored in thereg and can be used as input to other circuit elements. But the output of a
circuit cannot be connected to a reg. The value stored in areg is changed through a fresh
assignment in the program, time, integer, real, andrealtime are the other variable types of
data.

20. SCALARS AND VECTORS

Entities representing single bits — whether the bit is stored, changed, or transferred
— are called "scalars.” Often multiple lines carry signals in a cluster - like data bus, address
bus, and so on. Similarly, a group ofregs stores a value, which may be assigned, changed,
and handled together. The collection here is treated as a "vector." Fig.13 illustrates the
difference between a scalar and a vector, wr and rd are two scalar nets connecting two circuit
blocks circuit 1 and circuit2.b is a 4-bit-wide vector net connecting the same two blocksb[0], b[1], b[2],
and b[3] are the individual bits of vector b. They are "part vectors."

A vectorreg or net is declared at the outset in a Verilog program and hence treated as
such. The range of a vector is specified by a set of 2 digits (or expressions evaluating to a
digit) with a colon in between the two. The combination is enclosed within square brackets.

—  wr & rd are scalars

WT

v
rd

Circuit | Circuit 2

part vectors

4-bit-wide vector b

Fig.13 Illustration of Scalars and Vectors
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Examples:

wire[3:0] a; [* a is a four bit vector of net type; the bits are designated as a[3], a[2],
a[1]anda[0]. */

reg[2:0] b; I* b is a three bit vector ofreg type; the bits are designated as b[2], b[1]
and b[0]. */

reg[4:2] C; /* C is a three bit vector ofreg type; the bits are designated as c[4],

c[3] and c[2]. */

wire[-2:2] d /* d is a 5 bit vector with individual bits designated as d[-2], d[-1],
d[0], d[1] and d[2]. */

Whenever a range is not specified for a net or areg, the same is treated as a scalar - a
single bit quantity. In the range specification of a vector the most significant bit and the least
significant bit can be assigned specific integer values. These can also be expressions
evaluating to integer constants - positive or negative.

Normally vectors - nets orregs - are treated as unsigned quantities. They have to be
specifically declared as *'signed™ if so desired.

Examples
wire signed[4:0] num; /l num is a vector in the range -16 to +15. reg signed
[3:0]numl; /I numl is a vector in the range -8 to +7.

21. PARAMETERS

In some designs, certain parameter values are not committed at the outset.
Proportionality constants, frequency-scaling levels, number of taps in digital filters, etc., are
typical examples. There are also situations where the size of the design is left open and
decided at a later stage. Bus width, LIFO depth, and memory size are such quantities which
may be committed later. All such constants can be declared as parameters at the outset in a
Verilog module, and values can be assigned to them; for example,

parameterWOrd_size =16;
parameterwordsize = 16, memsize = 256;

Such parameter assignments are made at compiler time. The parameter values cannot
be changed (normally) at runtime. However, a parameter that has been assigned a value in a
module definition can have its value changed at runtime - that is, when the module is used at
runtime in some other design (i.e., instantiated) or when it is tested. Such modifications are
carried out through a ""defparameter’’ statement. The parameter assignment done as part of
parameter declaration can have the appropriate constant on the right-hand side ofthe
assignment statement, as was the case above. The assignment can also have algebraic
expressions on the right hand side. Such expressions can involve constants and other
parameters declared already; for example

Parameter word size = 16, factor = word_size/2;
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21. OPERATORS

Verilog has a number of operators akin to the C language. These are of three types:

a. Unary: the unary operator is associated with a single operand. The operator precedes the
operand - for example, ~a.

b. Binary: the binary operator is associated with two operands. The operator appears
between the two operands - for example,a&b.

c. Ternary: the ternary operator is associated with three operands. The two operators
together constitute a ternary operation. The two operators separate the three operands -
for example

a?b:C I/ Here the operators "?" and ":" together define an operation.
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UNIT - 11
GATE LEVEL MODELING

1. INTRODUCTION

Digital designers are normally familiar with all the common logic gates, their
symbols, and their working. Flip-flops are built from the logic gates. All other functionally
complex and more involved circuits can also be built using the basic gates. All the basic gates
are available as "Primitives” in Verilog. Primitives are generalized modules that already exist
in Verilog. They can be instantiated directly in other modules. Further design description
using gate primitives is quite close to the actual circuits.

2.AND Gate Primitive
The AND gate primitive in Verilog is instantiated with the following statement:
andgl (O, 11,12, ..., In);

Here 'and" is the keyword signifying an AND gate. g1 is the name assigned to the specific
instantiation. O is the gate output; 11, 12, etc., are the gate inputs. The following are
noteworthy:

« The AND module has only one output. The first port in the argument list is the output
port.

« An AND gate instantiation can take any number of inputs — the upper limit is compiler-
specific.

« A name need not be necessarily assigned to the AND gate instantiation; this is true of all
the gate primitives available in Verilog.

2.1 Example 1

Fig.1 shows the stimulus program for testing the AND gate g1. The outputobtained by
stimulating the program is shown in Fig.2. Some explanationregarding the simulation
program is in order here.

The moduletest_and has no port. It instantiates the AND module once.

The test input sequence is specified within the initial block - the sequence of
statements between the begin and end statements together form this block.

The keyword "initial™ signifies the settings done initially — that is, only once for the
whole routine.

The first set of statements within the initial block
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al=0;

a2=0;

make

al=a2=0

at zero simulation time.

After 3 time steps, al is set to one but a2 remains at 0. The expression "#3" means "after
3 time steps". Subsequent changes in al and a2 also can be explained in the same manner.
module test and;
reqg al, az;
wireb;
Initial
Begin

]
1

]
O =2 =20 =00

o
]

Q

Q

N
]

HBEEBED
4]

NN 2N =22 =
I

o)

end

and gl(b, a1, a2);

initial Smonitor ( $Stime, "al = %b, a2 = %b, b = %b™ al, a2, b);
initial #100 $finish;

endmodule

Fig.1 A Module to instantiate AND gate Primitive

0Oal = 0a2 =0b =0
Jal = 1a2 = 0b =0

4al = 0a2 = 0b =0
6al = 0a2 = 1b =0
[0al = 1a2 =1b =1
[3al = 1a2 = 0b =0
[4al = 1a2 = 1b = 1

Fig.2 Output of the Module shown in fig.1

» The program displays the variable values - that is, the values of O, al, and a2 whenever
any one of these changes. This is evident from the printout on the monitor, which has
been reproduced in Fig.2.
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» A pair of variables al and a2 are declared in the program, and the values stored in them
are given as inputs to the AND gate instantiation.

* Any variable not declared in the module is by default taken as a net of wire type; it is also
taken as a scalar. The same is true of all modules in Verilog.

» The term $time in the $monitor statement signifies the running time of the program.
Here it causes the value of time at the instant of capturing the data for display, to be
displayed.

¢ The statement
#100 $finish;

Signifies that the program will stop simulation and exit the operating system at the
end of 100 time steps.

2.2 Truth Table of AND Gate Primitive

The truth table for a two-input AND gate is shown in Table 1. It can be directly
extended to AND gate instantiations with multiple inputs. The following observations are in
order here:

Input 1
0 | X z
o 0 0 0 0 0
- | 0 | X X
E‘ X 0 X X X
z 0 X X X

Table 1 Truth Table of AND gate Promitive

» If any one of the inputs to the AND gate instantiation is in the O state, its output is also in
the O state. It is irrespective of whether the other inputs are at the O, I,xor z state.

» The output is at 1 state if and only if every one of the inputs is at 1 state.
» For all other cases the output is at the x state.

* Note that the output is never at the z state - the high impedance state. This is true of all
other gate primitives as well.
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3. MODULE STRUCTURE

Fig.1 shows a typical module. In a general case a module can be more elaborate. A
lot of flexibility is available in the definition of the body of the module. However, a few
rules need to be followed:

» The first statement of a module starts with the keyword module; it may be followed by
the name of the module and the port list if any.

» All the variables in the ports-list are to be identified as inputs, outputs, orinouts. The
corresponding declarations have the form shown below:

- Inputal,a?;
- Output bl, b2;
< Inoutcl, c2;
» The port-type declarations here follow the module declaration mentioned above.

» The ports and the other variables used within the body of the module are to be identified
as nets or registers with specific types in each case. The respective declaration statements
follow the port-type declaration statements.

Examples:
wire al, a2, c;
reghl, b2;

The type declaration must necessarily precede the first use of any variable or signal in the
module.

» The executable body of the module follows the declaration indicated above.
» The last statement in any module definition is the keyword "endmodule™.

» Comments can appear anywhere in the module definition.

4. OTHER GATE PRIMITIVES

All other basic gates are also available as primitives in Verilog. Details of the
facilities and instantiations in each case are given in Table 2. The following points are
noteworthy here:

* Inall cases of instantiations, one need not necessarily assign a name to the instantiation.
It need be done only when felt necessary — say for clarity of circuit description.

* In all the cases the output port(s) is (are) declared first and the input port(s) is (are)
declared subsequently.

* The buffer and the inverter have only one input each. They can have any number of
outputs; the upper limit is compiler-specific. All other gates have one output each but
can have any number of inputs; the upper limit is again compiler-specific.
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Gate Mode of instantiation Output port(s) Input port(s)
AND J|andga(o,i1,i2,...i8); o} i1,i2, ..
OR orgr(o,il,i2,...i8) 0 i1,i2, ..
NAND [nand gna(o,i1,i2,...i8); o} i1,i2, ..
NOR [norgnr(o,i1,i2,...i8); o} i1,i2, ..
XOR |xorgxr(o,il,i2,...i8); 0 i1,i2, ..
XNOR |xnor gxn (0,i1,i2,...i8); o} i1,i2, ..
BUF |bufgb(o1,02, ....10); 01,02,03, .. i
NOT |[notgn(o1,02,03,...1); o1,02,03, .. i

Table 2 Basic gate primitives in Verilog with details

4.1 Truth Table

Extending the concepts of truth table of the AND gate primitive, one can form the
truth tables of all other gate primitives. The basic features of each are given in Table 3.

Type of gate 0 output state | output state x output state
AND ._ﬂmy one of the All the inputs are at one
inputs is zero
All the inputs are at  |Any one of the inputs is
I IL. one P zerf) P
- - - —] All other cases
OR All the inputs are at |Any one of the inputs is
Zero one
Any one of the All the inputs are at
NOR [/ OF p
inputs is one ZEro
XOR It every one of the inputs is definite at zero or |If any one of the inputs is
one, the output is zero or one as decided by at x or z state, the output is
XNOR the XOR or XNOR function at x state
BUF If the only input is at [If the only input is at 1
0 state state ..
- — - - — - All other cases of inputs
NOT If the only input is at |If the only input is at 0
| state state

Table 3 Rules for deciding the output values of gate primitives for different input combinations
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5. ILLUSTRATIVE EXAMPLES

5.1 Example 2

The commonly used A-O-I gate is shown in Fig.3 for a simple case. The module and
the test bench for the same are given in Fig.4. The circuit has been realized here by
instantiating the AND and NOR gate primitives. The names of signals and gates used in the
instantiations in the module of Fig.4 remain the same as those in the circuit of Fig.3.

The moduleaoi_gate in the figure has input and output ports since it describes a
circuit with signal inputs and an output. The moduleaoi_st is a stimulus module. It generates
inputs to the aoi_gate module and gets its output. It has no input or output ports.

ale—
g1
azZe—
o1
O o}
o2
ble—|
g2
bZ2e—|

Fig.3 A typical A-O-1 gate circuit

The A-O-1 gate module has three instantiations - two of these being AND gates and
the third a NOR gate; this conforms to the circuit of AOI gate in Fig.3. Within theaoi_gate
module, all signals are of type net. Theaoi_ gate module in Fig.4 is instantiated once in the
moduleaoi_st for testing.

Any such instantiation of a user-defined module in another module has to be
assigned a name. The instantiation is given the name gg here. Note that all the inputs to the
instantiation ofaoi_gate in the test bench are fed throughregs.

Theaoi_gateandaoi_st are compiled and run. Different combinations of values are
assigned to al, a2, b1, and b2 in the test bench at regular intervals of 3 time steps. At all
such time steps at least one of the signals included in the monitor statement changes.

Hence all the signal values are displayed on the monitor at three time step intervals.
The results of running the test bench are reproduced in Fig.5, which confirms this.

Il B.Tech—1 SEM 44 DDTV




S*module for the aci-gate of figure 4.3 instantiating
the gate primitives - £ig4.4*%/

module aci gate{o,al,a2 bl . b2);

input al,a2, bl b2;// al,a2, bl,b2 form the input
fiports of the module

putput o/ /0 is the single gutput port of the module
wire ol,o02:;//0l and o2 are intermediate signals
Siwithin the moduls

and gliel,al,aZ); //The AND gate primitive has two
and g2{o2,bl,B2);:// instantiations with assigned
S/names gl & g2.

nor g3fo,ol,02) ;//The nor gate has one instantiation
SAwith assigned name g3.

aendmodul e

S iTest-bench for the aci gate above
module aci st
reg al,a2, bl,b2;
fifspecific values will be assigned to al,aZ,bl,
SF and b2 and these connected
SAfte input ports of the gate insatntiations;
Sihence these wariables are declared as reqg
wire o;
initial
begin
al =
az
Bl
b2
#3 al
#3 a2
#3 bl
#$3 b2
#3 al
#£3 a2
#3 bl =

| I || A | |
oo oOHErFHrROo OO0

end

initial #1000 Sstop:/ the simulation ends after
Sfrunning £for 100 tu's.

initial Smonitor{itime . n o =%b , al = &b ,
a2z = % , bl = %b ,b2 = &b ", o5.,al,a2, bl b2);

acl gate ggl{o,al,a2, bl b2);

endmodule

Fig.4 Module for A-O-I gate of Fig.3
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# 0 o 1 ,at=0 , a2=0, bt =0 ,b2=10
# i o=1,al=1,;a32=0,bl =0 ;b2=21
# 6 oo=0 ,al=1, a2=1, bl =0 ,b2 =20
# 9 o=0,;al=1, a2=1, bl =1 ,b2=10
# 18 o=1,al=1, aZ2=0, bl =1 ,b2Z=10
# 21 o=1,al=1, a2 =0, bl =0 ,b2 0

Fig.5 Results of aoi_st test bench of fig.3

The moduleaoi_gate has been synthesized and the synthesized circuit shown in Fig.6;
the figure does not warrant any detailed explanation.

Fig.6 Synthesized version of the moduleaoi_gate of fig.4

module aoi gateZ(o,a);

input [3:0la;//A is a vector of 4 bits width
putput o;// output o is a scalar

wire ol,02;//these are intermediate signals

and (ol al0],alll) ;a2 al2],a[31);

nor (o,ol,02);/*The nor gate has one instantiation
with assigned name g3.*/

endmodule

module aoi st2;
reg[3:0] aa;
ani gate2 gglo,aa);

initial
begin
aa = 4'b000; //a being a wvector, all its
#3 aa = 4'b0001;//bit components are
#3 aa = 4'b0010;//assigned values at one go.
#3 aa = 4'b0100;//Similarly their changes are
#3 aa = 4'bl1000;//combined in the assignments
#3 aa = 4'b1100;
#3 aa = 4'b0110;
#3 aa = 4'b0O011;
end
initial
Smonitor({ Stime , ™" aa =%b , o =%b " , aa,o);
initial #24 Sstop;
endmodule

Fig.7 Another realization of the A-O-I gate with test bench
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Both the modules can do with some elegant simplification. First consider the
stimulus moduleaoi_st in Fig.4. All the four inputs can be clubbed together and treated as a
"vector" input. Often this may be possible to be identified with a four-bit-wide bus in a
system. It makes the vector representation all the more meaningful. With this, the variables
together can be declared as a single vector. The value taken by the vector can be defined
with relevant time delays. To accommodate such a change, the AOI module of Fig.4 is
recast in Fig.7. The compactness achieved here is carried over to the instantiation of the
module for its test bench aoi_st2, which is also shown in the figure.

The AOI gate itself has been made compact on two counts: All the four inputs have
been clubbed together and treated as a four-bit vector. Further, the two and gate
instantiations are clubbed together into one statement. Note the format of the statement - a
comma separates the two instantiations, and as usual a semicolon signifies the end of the
statement. In any set of instantiations, all similar instantiations in a module can be
combined in this manner.

The module aoigate2 has an input/output port since it describes a circuit with signal
inputs and outputs.aoi_st2 is a stimulus module. It generates inputsto the module from
within the stimulus module and gets its output. It has no input or output port. In a more
general case one may have a number of modules defined at different levels, which are
repeatedly instantiated in bigger modules. The stimulus module may be at the apex. It
may carry out the stimulus activity by generating the inputs to the other ports in the
hierarchy and receiving their outputs.

The stimulus module need not necessarily have a port;aoi_st in Fig.4 and aoi_st2 in
Fig.7 are typical examples. The results of running the test bench aoi_st2 of Fig.7 are shown
in Fig.8.

To facilitate involved design descriptions, some additional flexibility is available in
Verilog.

» Signals at the ports can be identified by a hierarchical name. Such addressing may
become useful when displaying them in the stimulus module.

» Signal instantiations illustrated above specify inputs and outputs in the same sequence as
was done in the definition. The procedure is simple and acceptable in situations with only
a few numbers of inputs and outputs. But in modules with a comparatively large number
of inputs and outputs, sticking to the sequence and keeping track of it becomes strenuous.
In such situations the instantiation can be done by identifying the inputs and outputs on a
one-to-one basis. Thus the instantiation of the aoi_gate2 in the test bench of Fig.7 can be
described alternately as

aoigate2 gg (.0(0), .a[1 ](aa[1 1), ,a[2](aa[2]), ,a[3](aa[3]), ,a[4](aa[4]));

Here one need not stick to the same order of assignment of the ports as in the module
definition. Thus the instantiation entered as

aoigate2 gg (.a[1 ]J(aa[l ]), ,0(0),.a[2](aa[2]), ,a[4](aa[4]), a[3](aa[3]));

is equally valid.
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i 0 aa = 0000 , o =1
# 3 aa = 0001 , o 1
i 6 aa = 0010 , © 1
# 9 aa = 0100 , o =1
i 12 aa = 1000 I e i
i g & aa = 1100 , o 0
i 18 ga = AEIE ; o= 1
i 21 aa = 0011 , o =0

Fig.8 Results of aoi_st test bench

5.2 Example 3: 4-to-16 Decoder

-4

a {a)

2
decoder

Heetisin

‘ T e B
1 |™ =5
|
gL e L
3-t0-% decoder J 4-to-16 decoder J
(b (c)
Fig.9 Design of 4-to-16 decoder using smaller decoders
(a) 2-to—4 decoder (b) 3-to-8 decoder (c) 4-to-16 decoder using two 3-to-8 decoders

Decoder design using gates can be described in various ways. Here we define a 2- to-
4 decoder module and instantiate it repeatedly and judiciously to realize a 4-to- 16 decoder.
The procedure is not necessarily the best or most elegant.

Fig.9 (c) shows the formation of the 4-to-16 decoder in terms of two numbers of 3-to-
8 decoders. The 3-t0-8 decoders have an "Enable™ input each (designated 'en' - one being of
the active high and the other of the active low type); these are connected to the most
significant bit of the 4-bit input to form the 4-to-16 decoder. The 3-to-8 decoder can again be
formed in terms of two 2-to-4 decoders in the same manner as shown in Fig.9(b). The 2-to-4
decoder block used here is shown in Fig.9(a).The logic of building a complex circuit unit in
terms of repeated use of smaller and smaller circuit units followed here is used in the design
description as well.
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module dec2 4 (a,b,en);
output [3:0] a;

input [1:0]b; input en;

wire [1l:0]1bb;

not (bb[1],b[1]1}; (bb[0],bI0]1);

and (a[0] ,en, bb[l],bb{0}), (alll,en, bbil], bI0}),
(al2] ,en, bBi1]l,bhi0}) ., {(al3],en0, BE1T . LiOI);
endmodul e

//test bench

module tst dec2 4();

wire [3:0]a;

reg[l:0] b; reg en;

dec? 4 dec(a,b,en);

initial
begin

{bh,en} =3"'L000;
#2{b,en} =3"'b001;
$#2(b,en} =3'hL011;
£2{b,en} =3"'b101;
#2{b,en} =3'bl111;
end
initial
Smonitor (Stime |, "output a = %b, input b = %b ",
a, b);
endmodule

Fig.10 Design Description of a 2-to-4 decoder circuit with test bench

Fig.10 shows the design description of a 2- to-4 decoder module and a test bench for
the same. The decoder module (dec2_4) accepts a 2-bit-wide vector input b and decodes it
into a 4-bit-wide vector output a. It has an additional "Enable™ input designated “en"; the
outputs are enabled only ifen = 1.

The input en has been introduced to facilitate expansion of the decoder capacity by
repeated instantiation as explained above. The test bench for the decoder is more illustrative
than exhaustive; that is, it does not test the module for all possible input values. Results of the
simulation run are shown in Fig.11.

/ foutput

e 0 output a = 0000, input b = 00
e 2 output a = 0001, input b = 00
e 4 putput a = 0010, input b = 01
e 6 output a = 0100, input b = 10
e 8 output a = 1000, input b = 11

Fig.11 Results of the test bench of Fig.10

Fig.12 shows a 3-t0-8 decoder module formed by repeated instantiation of the 2-to-4
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decoder of Fig.10. The eight AND gate instantiations ensure that the outputs are enabled only
whenenn — a separate "Enable" signal — goes active.

module dec3 B (pp.q,enn);

output[7:0]1pp;

input[2:0]qg;

input enn;

wire qgg;

wire[7:0]p;

not(gq,gl2]) ;

dec2 4 gl(.a(p[3:0]),.b(g[1l:0]),.en(qgq));
dec2 4 g2(.a(p[7:4]1),-b(g[1:0]),.en(gl2]));
and g30(pp[0],p[0] ,enn) ;

and g3l (pplll,p[1],enn);

and g32(pp[2],p[2],enn);

and g33({ppl[3],pl[3] ;enn) ;

and g34 (pp[4],p[4],enn);

and g35(ppl3],pl[5] ,enn) ;

and g36(pplél,plbt],enn) ;

and g37(ppl7],p[7] ;enn) ;

endmodule

Fig.12 3-to-8 decoder module formed by repeated instantiation of the 2-to-4 decoder module in
fig.10

Following the same logic, the module for the 4-to-16 decoder is described in Fig.13.
A test bench to test the module through all the possible input states is also included in the
figure. Fig.14 shows the results of running the test- bench.

module decd 16(m,n);

cutput[15:0]m;

input [3:0)n;

wire nn;

[/wire en;

not (nn,nf3]) ;

dec3 8 g3{.ppim[7:01), .gl{n[2:0]), enn{nn) };
decd 8 g4 (.ppl{m[15:81); .g{nf2:0]) ;.enn{nl[32])};
endmodule

//test-bench

madule decd 16 stimulus;:
wire[15:0]m;

f/wire 1,m,n;

reg[3:0]n;

decd 16 gg(m,n) ;

initial

continued
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continued

begin

n=4'L0000;#2n=4"'L0000; #2n=4"L0001;
#2n=4"b0010;#2n=4"L0011; #2n=4'L0100;
#2n=4'b0101;#2n=4"b0110; #2n=4"'b0111;
#2n=4"'01000;#2n=4"b1001; #2n=4'b1010;
#2n=4'b1011;#2n=4'b1100; #2n=4'b1101;
#2n=4'b1110;#2n=4"b1111; #2n-4'b1111;

=]

gg.g3.gg = %b

end

initial Smonitor ($time," m = %b ,n = %b ,

. 9g.g4.g9l.bb = %b " , m,n,gg.g3.99,99.94.g9l.bb);
//gg9.93.qg displays the enable line of dec3 8 called
gF-—gl

//9g.gd4.gl.bb displays the bb wire in decZ 4

initial #40 Sstop ;

endmodule

Fig.13 A 4-to-16 decoder formed by the repeated instantiation of 3-to8 decoder module with test bench

//output
e
gg.93 .49
[/
gg.g3 .dg
/4
gg.g3.dg
[
gg.g3.qg
Fe
gg.g3 .4g
Pk -
gg.g3.qg
[ #
gg.g3 .99
e
gg.g3.qg
Ve
gg.g3 .dg
e
gg.g3.dg
£

0 m = 0000000OCOOO0OO0ODL
=1 , gg-gd.gl.bb = 11
4 m = 00000000000O00010
=1 , gg-g4.gl.bb = 10
6 m = 00000DODODCOOOODLOO
=1 , gg.gd4.gl.bb = 01
8 m = 0000000000001 000
=1 , gg.gd.gl.bb = 00
10 m = 000000000001 0000
=0 , gg.gd.gl.bb = 11
12 m = 0000OOO0O00D100000
=0 , gg.gd4d.gl.kk = 10
14 m = 0000000001000000
=0 , gg.gd4.gl.bb = 01
16 m = 0000000010000000
= 0 , gg.gd.gl.bb = 00
18 m = 0000000100000000
=1 , gg.gd.gl.bb = 11
20 m = 00O0OOCDO10O0OOO0DOOOD
=1 , gg.gd4d.gl.bb = 10
22 m = DOOOO1ODOOOOODOOO
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confinued
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gg.gd.gl.bb = 01
goooi1o0000000000 ,n = 1011 ,
gg.gd.gl.bb = 00
= 0001000000000000 ,n = 1100 ,
gg.gd.gl.bb = 11
= Q0100000000O00000 ,n = 1101 ,
gg.gd.gl.bb = 10
= Dlo0000000000000 ,n = 1110 ,
gg.g4.gl.bb = 01
io0ooocoooopooOODO ,n = 1111 ,
gg.gd4d.gl.bb = 00

Fig.14 Results of the test bench of test bench for the 4-to-16 decoder

Two signals within the two nested modules are monitored in dec4 16 stimulus.

Formation of their hierarchical addresses is also shown in fig.15.

The module dec3 8 is instantiated twice in the module dec4 16. Here the port

declarations are done by declaring the port names on a one-to one basis. The order has
not been maintained as in the defining module.

decd 16 stimulus

Ap g
& m n
| dect 16 3 |
mpﬂﬂ % Tmn&m
nn n[4]
n[3:0]
p& Eny qv wa En kp
[ decis g3 | | decis—» gt |
o ¥ Y Y o pzot ¥ Y ¥ b
aq jar3] aq Al 3]
q[1:0] q [1:0]
@ gEn yb by Eny ah 43 En yb by Eny aa
dc24 gl | [ dec2d g2 || de2a g | [ d2s> e

Fig.15 Block diagram representation of the module instantiations and signal assignments for the
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5.2.1 Decoder Synthesis

The synthesized circuit of the 2-to-4 decoder module of Fig.10 (dec2_4) is shown in
Fig.16. The AND gate cells available in the library are all of the two-input type; hence six
such cells (designated as ix5, ix7, ixll, ixI3, ixI5, and ixI19) are utilized to realize the four
numbers of three-input AND gates instantiated in the design module. The NOT gates are
realized through two NOT gate cells in the library (designated as ixl and ix3). The wider
lines in the figure signify bus- type interconnections.

o X7
in[1] e L £

i1t

infil]
out in[1]

inf1]

en |:/ infCT

b[1:0] D—l_ b3 in[0]
in ot ]

in[1] :

ixt b

in >GDU[ i

Fig.16 The synthesized circuit of the 2-to-4 decoder of Fig.10

ot

ix19

iri[1]
oLt infd]

ot

CRCE

o
—
L]

The synthesized circuit of the 3-to-8 decoder module of Fig.12 (dec3_8) is shown in
Fig.17. The two instantiations of the dec2_4 module (g1 and g2) are shown as black boxes.

Similarly, Fig.18 shows the synthesized circuit of the 4-to-16 decoder module of
Fig.13 (dec4_16). The two instantiations of the dec3_8 module (g3 and g4) appear as black
boxes inside.

Fig.19 shows the complete hierarchy of instantiations in the synthesized circuit. In the
figure boxes g3 and g4 represent instantiations of the 3-to-8 decoders used in the module.
Each of these has two numbers of the 2- to-4 decoders - designated as g1 and g2; these are
shown enclosed inside boxes.
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g2 ) out ]
b[1-0] 2[3.0] .| in[1] — > pa[7.0)
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dec?_4 ] out
= a in[1],225
1 b1:0] s[30] o -
n aut . in[o]
dec?_4 in[1]ix'21
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Fig.17 The Synthesized circuit of 3-to-8 decoder of Fig.12

g4

enn  pp(7:0] m[15:0]
q[2:0]
dec3_8
g3
enn pp[7:0]
gq[2:0]
dec3 8

n[3:0]

Fig.18 The Synthesized circuit of 4-to-16 decoder of Fig.13
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Fig.19 4-to-16 decoder — hierarchy of instantiations

6. TRI-STATE GATES

L B

Four types of tri-state buffers are available in Verilog as primitives. Their outputs

can be turned ON or OFF by a control signal. The direct buffer is instantiated as
Bufiflnn (out, in, control);

The symbol of the buffer is shown in Fig.20.
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control

Fig.20 A tri-state Buffer
We have

out as the single output variable
in as the single input variable and
control as the single control signal variable.

When control = 1,

out =in.

When control =0,

out is cut off from the input and tri-stated. The output, input and control signals should
appear in the instantiation in the same order as above. Details of bufifl as well as the other
tri-state type primitives are shown in Table 4. In all the cases shown in Table 4, out is the
output, in is the input, and control, the control variable.

The following observations are common to all the tri-state buffer primitives:

e If the control signal has a value that corresponds to the buffer being on, two
possibilities exist:

» The output has the same value as the input if the input is 0 or 1.
» The output is at x otherwise (i.e., if the input is x or z).

e If the control signal has a value that corresponds to the control signal being off, the
output is at z state irrespective of the value of the input.

e If the control signal is at x or z, three possibilities arise:
> If the input is at x or z, the output is at x.

> If the input is at O state, the output is L for bufifl and bufifO. It is at H for
notifl and notifO.

> If the input is at 1 state, the output is H for bufifl and bufifO. It is at L for
notifl and notifO.

Note that H corresponds to 1 or z state while L corresponds to O or z state.
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['ypical mstantiation Functional representation Functional description
in out
bufifl (out, in, Out=inifcontrol =1; else
confrol); out =z
control
in out
bufi£0 (out, in, Out = in if control = 0; else
confrol); out =z
control
in out
: — .
notifl (out, in, Out = complement of in
canfrol); if control= 1; else out =2
control
in out
notif0 (out, in, Out = complement of in
confral); ifcontrol=0; elscout =2
contro|

Table 4 Instantiation and functional details of tri-state buffer primitives

7. ARRAY OF INSTANCES OF PRIMITIVES

The primitives available in Verilog can also be instantiated as arrays. A judicious use
of such array instantiations often leads to compact design descriptions. A typical array
instantiation has the form

and gate [7:4] (a, b, c);

Where a, b, and C are to be 4 bit vectors. The above instantiation is equivalent to combining
the following 4 instantiations:

and gate [7] (a[3], b[3], c[3]), gate [6] (a[2], b[2], c[2]), gate [5] (a[1], b[1], c[1 ]), gate [4]
(a[0], b[0], c[0]);

The assignment of different bits of input vectors to respective gates is implicit in the
basic declaration itself. A more general instantiation of array type has the form

and gate [mm:nn] (a, b, ¢);

Where mm and nn can be expressions involving previously defined parameters, integers and
algebra with them. The range for the gate is 1+ (mm-nn); mm and nn do not have restrictions
of sign; either can be larger than the other.
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7.1 Example 4: A Byte Comparator

A circuit to compare two variables each of one byte is given in Fig.21. The circuit
outputs a flag d; d is 1 if the two bytes are equal; else it is 0. The output is activated only if
the enable signal en = 1. If en = 0, the circuit output is tri-stated. The module description is
given in Fig.22 along with a test-bench. The simulated output is in Fig.23.

a[7] "—\*.lw‘-,_-“\. al[7]
| [}
b(7]e—//

a[6] @—4\ ™\

] \_al[6]
bl6)e—'/ ./ T,
dd

&
'
-

s £€n

a[(] .—\ﬁ"\im 1|
bloje—//

Fig.21 A byte Comparator
Observations:
e In all array-type instantiations, the array sizes are to be matched.

e The order of assignments to outputs, inputs, etc., in the individual gates will be
decided by the order of the bits. Thus the array instantiation

Or gg [3:1] (a[3:1 ], b[4:2], c);
e isequivalent to the combination of instantiations
or gg [3] (a[3], b[4], c[2]), g9[2] (a[2], b[3], c[1]), gg[1] (a[1], b[2], c[O]);

e If the vector sizes in the port list do not match the array size specified, assignments
will be done starting from the right; that is, the rightmost instantiation will be
assigned the rightmost inputs and outputs and the following instantiations will be
made assignments in the order specified. However, it is desirable to avoid such ill-
matched instantiations.

¢ In the general case the array size is specified in terms of two constant expressions.
These can involve constants, previously defined parameters and algebraic
operators: Such an instantiation can have a form as

and gate [offset*2+size-1: offset*2] (a, b, c);

Where 'offset’ and 'size' are parameters whose values should have been assigned
earlier.
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module comp (d,a,b,en);
input en;
input{7:0]a,b;

putput d;

wire [T:0]c;

wire dd;

xor gll?:0] (c;b.a);
or{dd,c) ;

notifl {d,dd,en);
endmaodul e

module comp thb;
reg [T:0]a,b;

reg en;
comp ggl(d,a,b,enj;
initial
begin
a = 8'h00;
b = B'h0OD;
en = 1'b0;
end
always
#2 en = 1'bl;
always
begin
#2 a = a+l'bl;
2 b = b+2'd2;
end
initial $monitor (5time,"™ en = %b , a = % ,b = %b ,d
th “.en,a,b:d);
initial #30 Sstop:;
endmodul e
Fig.22 Module of an 8 — bit comparator and its test bench
# 0 en=20, a = 00000000, b =00000000, d =12
# 2en=1, a = 00000001, b = 00000000, 4 =10
# 4den=1, a = 00000001, b = 00000010, 4 = 0
# 6 en =1, a = 00000010, b = 00000010, 4 = 1
# Ben=1, a = 00000010, b = 00000100, d4 =1
#10 en = 1, a = 00000011, b = 00OO0D1I00, 4 = O
#12 en =1, a = 00000011, b = 00000110, 4 =0
#14d en = 1, a = 00000100, b = 00000110, 4 =1
#16 en = 1, a = 00000100, b = 00001000, 4 = 1
#18 en = 1, a = 00000101, b = 00001000, 4 = O
#20 en =1, a = 00000101, b = 00001010, 4 = O
#22 en = 1, a = 00000110, b = 00001010, 4 = 1
#24 en = 1, a = 00000110, b = 00001100, 4 = 1
#26 en =1, a = 00000111, b = 00001100, 4 = 0
#28 en =1, a = 00000111, b = 00001110, 4 = O
Fig.23 Results of test bench for 8-bit comparator
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8. DESIGN OF FLIP-FLOPS WITH GATE PRIMITIVES

The basic RS latch can be designed using gate primitives. Two instantiations of
NAND or NOR gates suffice here. More involved flip-flops, registers, etc., can be built
around these. Some of the level triggered versions of such flip-flops are taken up for design.
Subsequently, the edge-triggered flip-flop of the 7474 type is developed in a skeletal form.

Example 5: A Simple Latch
Fig.24 shows the design description of a simple latch formed with two NAND gates.

module sbrbff (sb,rb,g,gb) ;
input sb,rb;

output q,gb;
nand(qg,sb,gb) ;

nand(gb, rb,q) ;

endmodule

Fig.24 A module to instantiate AND gate primitive and test it

A test bench for the same is shown in Fig.25 along with the results of the simulation
run for 20 time steps. The test-bench has a block within a begin- end construct which
reassigns values torbandsb at two successive time step intervals. The whole sequence
described within the block lasts for 10 ns. Defining the block within the always construct
repeats the above assignment sequence cyclically until the simulation stops. The latch has
been synthesized, and the synthesized circuit is shown in Fig.26.

module tstsbrbff; //test-bench
req sb,rhb;

wire q,qgb;

gsbrbff ff(sb,rb,qg,qgb):

initial
begin
sk =1'bl;
rb =1'b0;
end
always
begin
#2 sb =1'bl:;rb =1"bl;
#2 sb =1'b0;xrb =1"'bl;
#2 sb =1'bBl;rb =1"b1;
#2 sb =1'bl;rb =1'L0;
#2 sb =1'bl;rb =1"bl;
end
initial Smonitor($time, " sb = %b, rb = %L,
g =%b, gv¢ = %b",sb,rb,q,qgb);

initial #20 S$stop:
endmodul e
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Simulation results

£ 0sh=1,

f 2s8=1, rb
# 4sb=0, b
# 6 sb=1, rb
t Bsh=1, rb
# 10 sbh =1 , rb
£ 14 sb = 0 , b
# 16 sb =1 , rb
£ 1B sb =1 , b

rb =

[/ [
oHRFORERO

808 a8 0 00 48,0 a9

o R e i R o e

()

gb
gb
gb
gb
gb
gb
gb
(5} o}
gb

oCHHROOoRR

[ =

Fig.25. A test bench for the flip-flop and its Simulation results

Fig.26 Synthesized circuit of the flip-flop module

Example 6: An RS Flip-Flop

The design module of an RS flip-flop along with a test bench for the same is shown in
Fig.27. The module is a slight modification of the flip-flop of Fig.24. The simulation results

are shown in Fig.28.

The synthesized circuit is shown in Fig.29. One can easily relate the difference
between this circuit and that of Fig.26 to the corresponding difference between the respective

design modules.
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module srff(s,r,qg,qb);
input =,r;

output g.gb;

Wire sSs5,IIr;
not{ss,; sl (rcyxr) ;
nand (g, ss,gb) ;
nand (gb, rr,q) ;
endmodule

module tstsrff; //test-bench
reqg s,r;

wire q,qgb;

grff ff(s,r,g,gb);

initial

begin
s =1'bl;
r =1'k0;

end

always

begin
#2 5 =1'b0:r =1"'b0;
#2 = =1'b0;xr =1'bl;
#2 s =1'b0;xr =1'b0;
#2 5 =1"bl;r =1"b0;
#2 5 =1'bl;r =1'b0;

end

initial Smonitor ($time, " s = %b, r = %b, g = %L,

b ", 8y 0g,qb);
initial #20 S$stop;
endmodul e

Fig.27 Module of an RS flip-flop with NAND gates and its test bench

# 0s=1, r=10,qg 1, g =10
# 2s=0,r=0,g=1,gb =20
# 4ds=0, r=1, g=0, gbp =1
# 6s=0, r=0,qg=0, go =1
$§¢ 8s=1,r=0,g=1,gb =20
# 10 s=0, =0, g=1,gb =20
$ 14ds=0,r=1,g=0,gb =1
# 16 s=0, rr=0, g=0, gb =1
$ 18 s=1, r=0,g=1, gb =20

Fig.28 Results of test bench for RS flip-
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Fig.29 Synthesized circuit of the RS flip-flop module

flop

Example 7: A Clocked RS Flip-Flop

The module in Fig.30 is for a clocked RS flip-flop. It is the RS flip-flop of Fig.27
with the clock signal gating the R and S inputs.

A test bench for the flip-flop is also shown in the figure. The clock waveform in the
test bench is a square wave with a period of 4 ns. The simulation results are shown in Fig.31.
Fig.32 shows the synthesized circuit of the flip-flop.

module srffcplevicp,s,r,q,gb);

input cp,s;,xr;

cutput q,gb;

wire ss,rr;

nand(ss,s,cp), (rx, r,cp), (g,s8,9b), (gb,rx, q);
endmodule

module srffcplev tst;// test-bench
reg Cp,S,T:
wire q,qgb;

£

srffeplev f£f{cp,s,r,q,g9b);

initial
begin

cp=1'b0;

s =1'b1;

r =1'b0;
end
always #Zcp=~cp:
always
begin

#4 = =1'bl;r =1'b0;

#4 s =1'"b0;r =1"bl;

f#4 = =1'b0;r =1'b0;

f#d = =1'"bl;r =1"'b0;

#4 = =1'b0;r =1"b0;
end
initial Smonitor(5time,"cp = %b ,58 = %b , r =%b , g =
th , gb =%b " ;cp;sS;r.g,gb);
initial #20 Sstop:
endmodule

Fig.30 Module of a clocked RS flip-flop using NAND gates and its test bench
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Fig.31 Results of test bench of clocked RS flip-flop
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Fig.32 Synthesized circuit of the clocked RS flip-flop module

Example 8: A D-Latch

The design description of a D latch is given in Fig.33. It has one instantiation of the
basic flip-flop of Fig.24. A test bench for the latch is also included in the figure. The
simulation results are shown in Fig.34. Two versions of the synthesized circuit are shown in
Fig.35 and Fig.36, respectively. The basic latch [sbrbff] - which was instantiated in the
module of Fig.33 — is shown as a black box in Fig.35. The internals of the latch are shown
in Fig.36, which brings out the hierarchy clearly.

module dlatch (en,d,q,gb) ;

input d,en;
output g,qgb;
wire dd;

wire s,r;
not:-nl{dd,d);

nand (sb,d,en);

nand g2 (rb,dd,en);
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sbrbff ff(sb,rb,q,qb);//Instantiation of the sbrbff
endmodule

module tstdlatch; //test-bench
reqg d,en;

wire q, gb;
diatch ff{en,d,g,gb) ;
initial
bagin
d: = 1"hi;
en = 1'b0;
end

always #4 en =~en;

always #8 d=-d;

initial Smonitor($time," en =%b , d =% , g= %b , gb
= %b " . en,d,qg;gb);

initial #40 Sstop;

endmodule

Fig.33 Module of D latch and its test bench

# 0 en 0, d=0, g=2x gpb ==x
# den=1, d=0, g=0, gp =1
# Ben=0,d=1, g=0, gp =1
$# 12en=1, d=1, g=1, gb =10
# 16 en=0,d=0, g=1, gb =20
# 20en=1, d=0, g=0, gb =1
$ 2den=0,d=1, g=0, gp =1
$ 2Ben=1, d=1, g=1, gb =10
$ 32en=0,d=0, g=1, gb0 =10
#3en=1, d=0, g=0, gb =1
Fig.34 Results of the test bench for D latch
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Fig.35 Synthesized circuit of the D latch module
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Fig.36 Synthesized circuit of the D latch module showing hierarchy

Example 9: An Edge-Triggered Flip-Flop

Fig.37 shows the circuit of an edge-triggered flip-flop. It is a simplified version of the
7474 1C. The circuit is a combination of three latches - designated as FF1, FF2, and FF3 in
the figure. FF3 is similar to the latch considered in Example 5. FF1 and FF2 are minor
modifications of FF3. The design modules for FF1 and FF2 are given in Fig.38. All three
latches are instantiated to form the edge-triggered flip-flop. A test bench for the flip-flop is
also included in the figure. With a square waveform for the clock - cp - the waveform for the
d input is chosen to bring out the edge-triggered nature of operation of the flip-flop.

The output obtained by running the test bench is shown in Fig.39; the respective
waveforms are shown in Fig.40. One can see that the output changes only at the positive
edges of the clock, and it assumes the value of the input at that instant of time.

Synthesized circuits of the latches FF1 (sbrbffdff) and FF2 (sbrbff 1) are shown in
Fig.41 and Fig.42, respectively. The synthesized circuit for the overall flip-flop is shown in
Fig.43. FF1, FF2, and FF3 are represented as boxes there; only their interconnections are

shown. The comprehensive circuit in terms of the elementary gates is not shown.The flip-flop
of Fig.37can be made comprehensive with slight modifications. It can be replicated and with suitable
additions, expanded substantially into register files and full-fledged memory.
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module dffgatnewl (cp,d,g,gb) ;
input d, cp;

output q,qgb;

wire sb, rh;

wire g,r;:

sbrbffdff ffl (rb,cp,5):
shrbffl ff2{s,d,cp,r.rh);
sbrbff ff3l(s,r,qg,qgb):
endmodule

module tst dffgatnewl; //test-bench
reg d,cp;
wire g,qb;
df fgatnewl f£f(cp,d,qg,qb):
initial
begin
d =1'"b0;cp =1'b0;
#2 cp =1'b1;#2 cp =1'h0;#2 cp =1'bl;%#2 cp =1'h0;
#2 cp =1'bl;#2 cp =1'b0;#2 cp =1"b1;#2 cp =1'b0;
end
initial
begin
3 d=1"bl;#2d=1"bl;#2d=1"b0; #3d=1"b0; #3d=1"bl;
end
initial Smonitor(Stime," cp=%b , d = %b , g = %b , gb
= %b " ; cpsd,q,qab);
initial #40 Sstop;
endmodule

module sbrbffdff (sb, rb,gb) ;
input sb,rb;

cutput gb;

wire qg;

nand (g, sb, gb) ;
nand{gb, rb, g ;

endmodul e

module sbrbffl (sbh,rb,cp;q,gb}: [//test-bench
input sb;rb,cp:

output g,gb;

nand (g, sb, cp, gb) ;

nand(gb, rb,q) ;:

endmodul e

Fig.38 Module of a positive edge triggered flip-flop and its test bench
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Fig.39 Results of test bench for edge triggered flip-flop
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Fig.40 Input and output waveforms for the edge triggered flip-flop module
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Fig.42 synthesized circuit of the flip-flop sbrbff1 module
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Fig43. Synthesized circuit of the flip-flop dffgatnewl module

9. DELAYS

Verilog has the facility to account for different types of propagation delays of circuit
elements. Any connection can cause a delay due to the distributed nature of its resistance and
capacitance. Due to the manufacturing tolerances, these can vary over a range in any given
circuit. Similar delays are present in gates too. These manifest as propagation delays in the 0
to 1 transitions and 1 to O transitions from input to the output. Such propagation delays can
differ for the two types of transitions. A variety of such delays can be accommodated in
Verilog. Sometimes manufacturers adjust input and output impedances of circuit elements to
specific levels and exploit them to reduce interface hardware. These too can be
accommodated in Verilog design descriptions.

9.1 Net Delay

One of the simplest delays is that of a direct connection - a net. It can be part of the
declaration statement

wire #2 nn; /I nnis declared as a net with a propagation delay of 2 time steps

Here nn is declared as a net with an associated propagation delay of 2 time steps. The
delay is the same for the positive as well as the negative transitions. The same is illustrated
in Fig.44 (a), which connects two circuit blocks through a net nn with a delay of 2 time steps
associated with it. The module in Fig.45 is a simple realization of the same. A test bench for
the module is also shown in the figure. The simulation results are shown in Fig.44 (b), which
brings out the effect of the net delay clearly.

Similar delays can be assigned to other types of nets as well. Whenever a variable or a
signal is defined as a net and no delay is specified for it, the associated delay is taken as zero.
This is true of instantiations of modules as well. The impedance connected as well as the
type of loading can differ for the two transitions. The propagation delay too can differ
accordingly. Two such delays can be specified as follows:

Wire #(2, 1)nm,;

Here nm is declared as a net with two distinct propagation delays; the positive (0 to
1) transition has a delay of 2 time steps associated with it. The negative(1 to 0) transition
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has a delay of 1 time step. The delays are explained in Fig.46. The module of Fig.45 has
been modified and shown in Fig.47; the propagation delays are different for rise and fall
here.

ri\'ctnn
v @

L
g e (a)
Circuit 1 Circuit 2
Lf{mlmnn ground line

X

—> 2 — — 2 —
T ib)
y

0 5 10

Time steps —=

Fig.44A net connecting two circuit blocks and the delay through it
(a) Connection diagram (b) Input and output waveforms

module netdelay (x,¥) ;
input x;

output y:

wire #2 nn;

not (nn,=xl§ JSfeircuitl in Figure 5.21
Buf y = x; Jfcircuit? in Figure 5.21
endmodule
module tst netdelay ; //test-bench
reg X
wire y;
netdelay nd(x,vy);:
initial
begin

X "b0;

6 x =~x;

end

initial #20 Sstop;
endmodule

Fig.45 A module to illustrate net delay and its test bench
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Fig.46 A net connecting two circuit blocks and the delay through it
(a) Connection diagram (b) Input and output waveforms

module netdelayl (®,¥);
input =

cutput v;

wire #(2,1) nn;

not {(nn,x);

y=nn;

endmodul e

module tst netdelayl; //test-bench

reg ®;
wire vy;
netdelayl nd(x,y):
initial
begin
% =1"'b0;
#6 x =~x;
end
initial #20 $stop:;
endmodul e

Fig.47 A module to demonstrate different delays for rise and fall times on net

9.2 Gate Delay

Gates too can have delays associated with them. These can be specified as part of the
instantiation itself.

and#3g(a,b,c);

The above represents an AND gate description with a uniform delay of 3 ns for all
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transitions from input to output. A more detailed description can be as follows:
and#(2, 1) (a, b, ¢);

With the above statement the positive (0 to 1) transition at the output has a delay of 2
time steps while the negative (1 to 0) transition has a delay of 1 time step. Fig.48 shows a
module to illustrate the delays associated with gate primitives. A test bench for the same is
also shown in the figure. The results of running the test bench are shown in Fig.50. The AND
gate instantiation in Fig.48 has different delays for the output transitions; respective
waveforms are shown in Fig.49.

module gade(a,al,b,c,bl,cl);
inppt bye.bl,cl;

output a,al;

or #3ggl{al,cl,bl);

and #(2,1)aggZ{a,c,b);
endmodule

module tst gade () ;//test-bench

reqg byebl  el;

wire c,cl;

gade ggde({a,al,b,c,bl,cl);

initial

begin

b =1'"b0;c =1"b0;bl =1"'b0;cl=1"b0;

end

always

begin
#5 b =1'b0;c =1'b0;bl =1'bl;cl=1"bl;
#5 b =1'bl;c =1'bl;bl =1"bl;cl=1"bl;
#5 b =1'bl;c =1'b0;bl =1"bl;cl=1"b0;
#5 b =1'b0;c =1'bl;bl =1"bl;cl=1"bl;
#5 b =1'bl;c =1'bl;bl =1'bl;cl=1"bl;
#5 b =1'bl;c =1'bl;bl =1'bl;ecl=1"'bl;

end

initial Smonitor(Stime , ” b= % , ¢ = %b , bl = %b
;21 = %bh , a = %b ,al = %h" ,b,c.bl,cl,a,al);

initial #30 Sstop:;

endmodule

Fig.48 Module to demonstrate the delays using gates

be—y7

@)
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Fig.49 AND gate instantiations with different delays for the positive and negative transitions
(a) Gate instantiated (b) Associated waveforms

8 0b=0,c=0,Dbl =0,cl=0, a=2x ,al =x
£ 1 b=0, c=0,bl=0,cl =0, a==x.,al =18
¥ 3 b= o= Bl =0 el =0 ;. A= ol =0
$# 5 b=0, c=0, bl=1,61=1, a=0 ,al =20
t 7Tb=0, c=0, bl =1 ,el =1, a=0 ,al =1
$10b=1, ¢ =1, bl =0 ,c1l =0, a=10 ,al =1
11 b=1, e =1 , bl =0 ,¢1 =0 , a=10 ,al 0
$t 13 b=1, ¢ =1, bl =0 ,¢1l =0 ,; a=1 ,al =10
2 15 b=1, ¢ =0 , B1 =1 ;26l =0 , a=1 ,al =10
#£17 b=1, c =0 ; bl =1 ,ecl =0 , a=1 el =1
$ 1B b=1, ¢c =0, bl =1 ,cl1 =0, a=0 ,cl =1
£t 20 b=0, ¢c=1, bl =0 ,cl =1, a=0 ,al =1
25 =1, e =1 ;, B1 =1 ;261 =1 ;, a=0 ;al =1
+ 2B b=1,¢=1, b1 =1 ,el =1, a=1 ,al =1

Fig.50 Results of test bench

In a more detailed design description, delays can be associated with nets as well as
gates. Consider the design description shown in Fig.51 (a). It has a total of 8 different time
delay values specified. All these are hypothetical and different from each other. It is done
intentionally to bring out the effect of each of them on the concerned gates and signals. The
circuit for this design description is shown in Fig.51 (b). Typical waveforms of input signals
as well as other signals are shown in Fig.52, to illustrate the different delays in the design
description.

Fig.52 (a) and Fig.52 (b) illustrate how changes in one of the inputs - bl - affect the
other signals; the signals and gates affected are shownhighlighted in Fig.52 (a). Throughout
this period, input cl is taken as at 1 state while inputs b2 and c2 remain at O state. The
propagation delays of signals at point P and Q and that for the signal a are shown in Fig.52
(b). These conform to the delays specified in the design segment of Fig.51 (a). Subsequently,
input c1 goes down to O state and input b1 remains at O state itself. Only signal b2 changes.
The affected signals and gates are shown highlighted in Fig.52 (c). The waveforms of signals
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affected and the associated propagation designs are shown in Fig.52 (d). These too conform
to the program segment of Fig.51 (a).

module gates(bl,b2,cl,c2,a);
impnt bil;b2.cl;c2;

wire #{2,1)al,az;

output a;

and #(3,4)gl (al;bl,cl);

and #(5,6)g2(a2,b2,c2);

or #(8,7)g3(a,al,a2);
endmodule

module tst gates;//test-bench
reqg blyb2 el ol
gates ggilbl,bZ,cl,c2,a);
initial
begin
BE1=1"b0;cl=1"b0;b2=1"b0;c2=1'b0;
end
initial #100 $stop;

always

begin
#2bl1=1"b0;cl=1"b0;b2=1"hl;c2=1"bl;
#2bl=1"bl;cl=1"bl;b2=1"b0;c2=1"'b0;
#2b1=1"b0:cl=1"bl:b2=1"'b0;c2=1"'b0;
#2b1=1"blzel=1"b0;b2=1"bl;c2-1"'bL0;
#2bl=1"b1;ecl=1"E0;b2=1"bE1;c2=1"bl;
#2b1=1"hil;ci=1"kl ;b2=1 "Hl;c2=1"hl;
#2bl=1"bl;cl=1"'bl;b2=1"bl;c2=1"'b0;
#2bl=1"b0;cl1=1"b0;b2=1"'hl;c2=1"bl;

end

initial Smonitor(Stims," bl=%b , ¢l = %b ,b2 = &b , c2
=% , a =% ",bl,cl,b2,c2,a);

endmodule

Fig.51 (a) A design having eight different time delay values

b1 &— p

Fig.51 (b) The circuit for the above module
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Fig.52 Illustration of signal delays in the design description segment in Fig.51
(a) The circuit portion active during changes to signal b1
(b) Signal waveforms following changes to signal bl
(c) The circuit portion active during changes to signal b2
(d) Signal waveforms following changes to signal b2

9.3 Delays with Tri-state Gates

For tri-state gates the delays associated with the control signals can be different from
those of the input as well as the output. The instantiation inclusive of this is shown in Fig.53
for a tri-state buffer of the bufifl type. Three time delay values are specified:

1. The first number represents the delay associated with the positive (0 to 1)transition of
the output.

2. The second number represents the delay associated with the negative (1 to O)transition
of the output.

3. The third number represents the delay for the output to go to the hi-Z state as the
control signal changes from 1 to O (i.e., ON to OFF command).

bufifl @ (1, 2, 3) bi{ao, ai, c);

A
Delay for the 0 to 1 ransition of ao
Delay for the 1 to () ransition of ao =
!
Delay for the outputto go to the A

hi-z state as ¢ changes from 1 to 0

Fig.53 Delays associated with typical tri-state gate
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Delays for the other tri-state buffers — namely bufif0, notifl and notif0 - may be
specified in a similar manner.

The turn-off time — 2 time steps here — represents the time for which the charge
will be stored in the output line after the control line turns off. Values of delay time and
storage time can be specified in this manner for all the types of tri- state type gates. The
following are noteworthy here:

» Delays and storage times can be specified on the gate primitives and the nets but not on
regs.

» All three time values are separately specified in the most versatile case.

» If only two time-values are specified, these are interpreted by Verilog as the rise (0 to 1)
and fall (1 to O) time, respectively. The turn-off time (delay) is taken as the smaller of
these two.

» If only one time value is specified, it is taken as the rise time, the fall time, and the turn-
off time.

» If no time value is specified, the rise and fall times at the output are taken as zero. The
turn-off is taken as instantaneous.

Normally the delay time of any IC varies over a range for ICs from different
production batches (as well as in any one batch). It is customary for manufacturers to specify
delays and their range in the following manner:

* Max delay: The maximum value of the delay in a batch; that is, the delay encountered in
practice is guaranteed to be less than this in the worst case.

* Min. delay: Minimum value of delay in a batch; that is, the specified signal is guaranteed
to be available only after a minimum of time specified.

» Typ. Delay: Typical or representative value of the delay.

Each of the delays in a gate primitive or for a net can be specified in terms of these
three values. For example

and #(2:3:4) g1(a0, al, a2);
can instantiate an AND gate with the following time delay specifications:
* TheOto 1rise time and the 1 to O fall time are equal.

* The minimum value of either is 2 time steps. Typical value is 3 time steps and the
maximum value is 4 time steps.

* Note that the colon that separates the numbers signifies that the timings specified are the
minimum, typical, and maximum values. At the time of simulation, one can specify the
simulation to be carried out with any of these three delay values. If the same is not
specified, the simulation is carried out with the typical delay value.

The group of minimum, typical, and maximum delay values for the propagation
delays can be specified separately for any gate primitive. Thus an AND gate primitive can be
specified as
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and #(1:2:3, 2:4:6) g2(b0, b1, b2);

Here for the O to 1 transition of the output (rise time) the gate has a minimum delay
value of 1 ns, a typical value of 2 ns, and a maximum value of 3 ns. Similarly, for the 1 to 0
transition (fall time) the gate has a minimum delay value of 2 ns, a typical delay value of 4
ns, and a maximum delay value of 6 ns. Such delay specifications can be associated with
nets as well as tri-state type gates also.

Examples

wire #( 1:2:3) a; /1 The net a has a propagation delay whose minimum, typical and
maximum values are 1 ns, 2 ns, and 3 ns, respectively*/

buf if 1 #(1:2:3, 2:4:6, 3:6:9) g3 (a0, bO, cO);
/* The different delay values for the buffer are as follows:

» The output rise time (0 to 1 transition) has a minimum value of 1 ns, a typical value of 2
ns and a maximum value of 3 ns.

» The output fall time (1 to O transition) has a minimum value of 2 ns, a typical value of 4
ns and a maximum value of 6 ns.

* The output turn-off time (1 to 0) has a minimum value of 3 ns, a typical value of 6 ns,
and a maximum value of 9 ns. */

» A typical design can have a number of circuit blocks like gates, flip-flops, etc., with
associated interconnections. The individual nets and gates may have their own separate
delays. The following general observations are in order regarding the overall delays
through the circuit: The cumulative delay for a signal in a path puts an upper limit on
the maximum operating frequency vis-a-vis the signal.

» Asignal may go through multiple paths in a design to arrive at one gate. It is necessary
to match the delays within specified tolerances for reliable operation of the device.

* In larger designs, one has to identify the longest signal path (critical path). This puts an
upper limit on the operating frequency apart from causing mal- operation in a worst-
case scenario. One of the practices in design is to reroute selected signals or redo
selected design segments to reduce critical path delays.

9.4 General Definitions for Delays

Specific numerical values have been used for all the delays in the examples so far.
However, Verilog LRM allows constant expressions to be used for any of the delay values.
The expressions used may involve simple algebra in terms of integers and known quantities
(but not variables).
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10. STRENGTHS AND CONTENTION RESOLUTION

In practical situations, outputs of logic gates and signals on nets in a circuit have
associated source impedances. When the outputs of two gates are joined together, the signal
level is decided by the relative magnitudes of the source impedances. Sometimes a disparity
between the impedances is intentionally introduced to minimize circuit hardware. Effects of
such differences in the impedances are indirectly introduced in design descriptions by
assigning "strengths" to specific signals. Signal strength declarations are of two types - those
associated with outputs of gate primitives and those with nets.

10.1 Strengths of Gate Primitives

Gate output strengths can be specified separately. Table 5 gives the names associated
with strengths, respective abbreviations, and their order by weight. These hold good for
logic 1 state as well as the O state.

Name supply | strong pull waak High impedance
o sul stl ul wal HiZ1
Abbreviations 2
sul st pul wal HiZ0
Strength Strongest Weakest

Table 5 Strength levels associated with outputs of gate primitives

The strengths associated with the output of a gate primitive can be specified
separately for the two logic levels. The format for the same is shown in Fig.54 for a specific
case; the format remains the same for all types of gate primitives.

buf (supplyl, pull0) (o, i);

T

Strength of 1 state in the output Strength of 0 state in the output

Fig.54 Format for specifying strengths in the instantiation of a gate primitive

10.2 Strength Contention in Gate Primitives

When two signals of opposite polarity and differing strengths drive a line, the output
status is decided by the stronger signal. However, if the signals are of equal strength, the
output is indeterminate. Different contention possibilities arise here. The variety is brought
out through examples.

Il B.Tech—1 SEM 79 DDTV




Example 10: Strength Contention

Consider the module in Fig.55. The logic levels taken by the signal O for different
combinations of inputs to the two buffers g1 and g2 are shown in Table 6. Contentions of
signals with other combinations of levels can be resolved in the same manner.

i s e (e —
0 0 ] No contention
o 1 1 ['.'.unr.l:m:iuu: the stronger
signal —i2 — prevails
1 0 1 f.'.onlunl;.nn: the .‘iln.mgl.:r
signal —11 —prevails
1 1 1 No contention

Table 6 Outputs for different inputs for the example of Fig.55

module contres{o,il,i2);

input 31 ,312;

ocutput o;

buf (supplyl,pulll)gl(o,il) , gZ(o,i2); //note that
endmodule// same net is driven by both the gates.

the

module tst contres; //TEST BENCH
req al,x2;
contres col(o,il,3i2);
initial
begin
il =0;
iz =0;
end //no contention
always
begin
#4 i1 =0; iz2
#4 i1 =1; i2
#4 i1 =1; i2
end
initial Smonitor (Stime,"il=%b,i2=%b,o0=%b",1i1,1i2,0);
initial #405Fstop:
endmodul e

1;// contention; the
0;// signal prevails.
1;//no contention.

SLronger

Fig.55 (a) A module to illustrate strength contention

The outputs for the four input combinations are given in the table. Whenever there is
a contention, the logic value of the output is decided by the stronger signal. In fact the design
description here realizes an OR gate at the output side without additional hardware. It does
not lead to any ambiguity.
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cutput

# 0 i1l =0 , 312=90 ; o =40
# 4 i1 =0 ;, 12 =1, o=1
i 831l =1 , 32=0 ; o =1
# 1231 =1 , i2=1 , g =1
i 1611 =0 , 12 =1 , 0o =1
# 20031 =1 s i2=41 4 o =1
# 24 1T =1  i2=1 ; o =1
# 2811 =0 , i2=1 , g =1
# 32 i1l =1 , i2 =0 , o =1
# 3g. il =1 , i2 =1 , g =1
# 40 i1 =0 ;, 12 =1 , o =1

Fig.55 (b) Output of module in Fig.55 (a)

Consider the Example in Fig.56, which is a slightly modified version of that in
Fig.55. The output logic values for different input combinations are given in Table 7. The
gate outputs are decided by following the same logic as in the last case. However, in one
case — when both gates "drag" the output with equal strength in opposite directions — the
output logic level is indeterminate — that is, x.

module contresl (o,il,12);

input i1, 12

cutput o;

buf (strongl ,pull0)jgl{o,il); buf{pulll,pulll)g2(o,i2);
endmodule

module tst contresl; //TEST BENCH

req-at, id;

contresl cclo,il,i2);

initial

begin

il =0;1i2 =0;end //no contention

always

begin

#4 i1 = 0; i2 = 1; //contention between pulll due to
ffil and pulll due to i2; output is x

#4 i1 =1; i2 =0; /[/contention; output is 1 since
//strongl of il prevails.

#4 il =1 ;i2 = 1; //no contention.
end
initial Smonitor($time ,"™ il = %b , i2 = %b ;0 = %b "

P s e A [
initial #40 Sstop;
endmodule
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output
- 0gil =0, i2= 0 ,0 =0
- 4 qd i, i2= 1 _,o ==
- B il =1, i2=0 o0 =1
- 12 11 = 1; 3i2= 1 ;0 =1
i 16 i1 = 0, i2= 1 ,0 = x
+ 20 i1 = 1, i2= 0 ;0 =1
= 24 i1 =1, i2=1 ,o0 =1
- 28 i1 = 0, i2= 1 ;0 = =
B 32 i1 = 1, i2= 0 ,p0 =1
s 36 i1 = 1, i2=1 ,o0 =1

Fig.56 Illustration of strength contention resulting in x-type output and simulation results

Logic value
of input il

Logic value
of input i2

Logic value
of output o

Remarks

0

]

]

No contention

]

1

X

Contention; both signals being of equal
strength, the output is indeterminate

1

Contention; the stronger signal il prevails

and forces the output to logic state 1

1 1 1 Mo contention

Table 7 Outputs for different inputs in the example of Fig.56

10.3 Net Charges

Whenever a net is driven by a signal, it takes the logic value of the signal. When the
signal source is tri-stated, the net too gets tri-stated. In practice the net can have a capacitor
associated with it, which can store the signal level even after the signal source dries up (i.e.,
tri-stated). To account for this situation, a charge storage capacity is associated with the net.
Such nets are declared with the keyword trireg. By virtue of the inherent capacitance
associated with them, trireg nets can never be in the high impedance state - that is, they can
assume 0, 1, or x value only. A trireg net can be in one of two possible states only:

» Driven state: When driven by a source or multiple sources, the net assumes the strength
of the source. It can be any of the strengths specified in Table 5.1 except the high
impedance value.

» Capacitive state: When the driven source (sources) is (are) tri-stated, the net retains the
last value it was in - by virtue of the capacitance associated with it. The value can be 0, 1
or x (but not the high impedance value).

When in the capacitive state, a net can have a storage strength associated with it. Three
such storage strengths are possible - namely large, medium, and small. Their details are
shown in Table 8. When a storage strength is not specified, it is assigned the default value -
medium. For a trireg net one cannot assign storage strength capacity separately for the 0
and the 1 states.
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Name Large Medium Small

Strength | Strongest Weakest

Table 8 Capacitive storage strengths on nets

Example 11: Net Storage

Consider the design in Fig.57. As long as the signal control = 1, the signal out follows
the signal in. When control goes to 0, out is disconnected from the input and it “floats.” It
retains the last value due to the capacitance storage capacity. The storage strength is
medium, signifying a medium value of capacitance.

module charge (out, in,control);
output out;

trireg({medium)out;

input in,control;

bufifl gl {out;in,control);
endmodule

module tst charge; //TESTBENCH
rei i, conbrol;
charge cl{ocut,in;contrel);
initial
begin
in =0;control =0;//when control=0 output is x
#2 control =0;in =0;
#2 control =1;in =0;
#2 pontrol =1;in =1;
#2 control =0;in =0; // output is retained at
end // the last value

initial Smonitor($time ," in= %b ,contrel = %b , out=
& " ansoontrolgont)s
initial #405stop;
endmodule
output
# 0 in = 0 , control = x , out==x
# 2in =0 , control = 0 , out=x
# 4 in =0 , control = 1 , out=0
# 6in =1 , control = 1 , out=1
# B in =0 , control = 0 , out=1

Fig.57 Illustration of net storage and simulation results
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10.4 Contention Between Net and Gate Primitive Outputs

In case of a contention between a signal output from a gate and the charge on a net,
the contention is decided by the relative strengths of the signals on each. Table 9 combines
all the strengths - those of the gate outputs as well as those of tri-stated nets and — lists them
in the order of their relative strengths.

Signal strength name Strength level

-
i’

Supply (drive) Strongest

=

Strong (drive)

Pull (drive)

Large (capacitance)
Weak (drive)
Medium (capacitance)

LA

= b | e | B

Small {capacitance ) Weakest

High impedance ]

Table 9 Signal strength names and their relative weights

10.5 Net Types and Port Assignments

All input ports of modules have to accept inputs from outside when instantiated and
respond to changes in them. Hence they have to be of net type. Note that input ports cannot
be of reg type since their values cannot be changed from outside. The output ports of
instantiated modules can be of net or reg types. Inout ports have to function as input or
output ports; hence they too have to be of net types.

The port assignments in an instantiation can be to scalars, vectors, part vectors, or
concatenated vectors. However, their sizes should match those of the ports in the module
definitions. Further, the type restrictions mentioned above have to be complied with.

In many situations the net types in the module definition and its instantiation may
differ in the case of input and inout ports. In such cases the resulting net type can be of only
one type. Either the net type declared in the module definition or that in the instantiation
(external type) dominates. The choice is decided by a specific protocol in the LRM. Table 10
gives details. As can be seen from the table, whenever the two net types lead to a logical
clash, the external data type prevails.
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Extemal net

e Wire & Wﬂ.nd & | Wordk Irireg | Trid | Tril | Sul | Sul
tri triand trior
Wire & tri E E ; E : E E
Wand & trand | E = N N N E E
Wor & trior | I E 2 " 2 E E
I'rireg 1 l " E : E E E
Trl} 1 1 - 1 E . E E
I'ml I I s I * I E E
Sulb I I 1 | I | E "
Sul 1 1 1 1 1 1 u E

Table 10 Net assignments with port connections

11. NET TYPES

wire is possibly the simplest type of net declaration, trireg considered in the last
section is another. A variety of other net types are possible. Most of them are provided for
specific types of contention resolution.

11.1 wand and wor Types of Nets

Strengths on nets can be decided in ways other than a direct declaration also. These
offer additional flexibility to the circuit designer. Consider the example of Fig.56 for which
the input-output values are shown in Table 7. For the signal input combination i1 = 0 and
i2 = 1, signal O is indeterminate. However, it may be made specific in two alternate ways:
'wand" and wor are two types of net declarations for such contention resolution, wand is a
wire declaration, which resolves to AND logic in case of contention, wor is a wire
declaration, which resolves to OR logic in case of a contention.

Example 12: Illustration of wand type net

Fig.58 shows a design module where the outputs of two buffers drive the same net;
the net has been declared to be a wand type, and any contention with the possibility of
indeterminate output is resolved according to AND logic. A test bench and simulation
results are also shown in the figure. The input and output logic values and the nature of
contention resolutions wherever it occurs are listed out in Table 11 also. Contention can be
seen to be resolved in two possible ways:

Whenil=1andi?2=0,the stronger signal i 1 at the 1 level prevailsand o = 1. The
contention is resolved according to the strengths.

When il =0 and i2 = 1, both signals being equally strong, the value of o is decided
according to AND logic.

The synthesized version of the circuit is shown in Fig.59; the circuit translates into an
AND gate which is erroneous.
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module wandl(il,iz2,o);
input il,i2;

cutput o;

wand o;

buf (strongl,pull0) gl (o,1il);
buf (pulll,pull) g2 (o,i2);
endmodule
module tst wandl; //testbench
req i11,1i2;

wandl ww(il,i2,0);

initial
begin
i1=0;i2=0;//o0 =0; no contention
#2i1=0;i2=1;//0 =0; contention resolwved

/faccording to wand declaration
211 =1;i2 =0;//out=1; contention
//stronger signal

resolved by

#2i1 =1;i2=1; //out =1; no contention.
end
initial Smonitor(Stime, "il=%b, i2=%b, o0=%b",11,12,0);
endmodule
(@
cutput
i 0i1=0,i2=0, o=0
i 211=0,1i2=1, o=0
i 4il1=1,1i2=0,0=1
i Bil=1,i2=1,0=1
(b)

Fig.58 Illustration of use of the wand-type net and simulation results

Logic _ Logic . Logic Remarks
value of i1 value of i2 value of 0
0 0 0 No contention
0 1 0 {.‘nuu::ninu resolved according to wand
declaration
1 1] 1 Contention resolved by the sronger signal
1 1 1 Mo contention

111 B.Tech—1SE

Table 11 Output values for different inputs of the design in Fig.58

1:0

o_and 0

d 0

Fig.59 Synthesized version of the module with the wand-type net
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Example 13: Illustration of wor-type net

Consider the design segment in Fig.58 with o being declared as a wor type of net
instead of a wand type. The corresponding design module is shown in Fig.60. A test bench
and simulation results are also shown in the figure. The outputs for all possible
combinations of inputs are given in Table 12. Contention can be seen to be resolved in two
possible ways:

. When il = 1 and i2 = 0, the stronger signal il at the 1 level prevails and 0 = 1. The
contention is resolved according to the strengths.

. When il =0 and i2 = 1, both signals being equally strong, the value of o is decided
according to OR logic.

The synthesized version of the circuit is shown in Fig.61; the circuit translates into an
OR gate; this is consistent with the desired input-output relationship shown in Table 12.

module worl (il,1i2,0);

input il,iZ2;

cutput o;

WOTr o}

buf (strongl,pull0) gl {o,1il);
buf (pulll ,pullQ) g2 {o,i2);
endmodule

module tst worl; //testbench
reg il,1i2;
worl wwi(il,i2, o) ;

initial
begin
i1=0;i2=0;//out =0 no contention
#2 i1=0;1i2=1;//out =1 contention rescolved according

/fto wor declaration

#2 il =1;i2 =0;//out=1 contention resolved by
//stronger signal

#2 il =1;i2=1; //out =1 no contention.

end

initial Smonitor (Stime, "il=%b, i2=%b,o0=%b",il,12,0);
endmodule

@)
Output
f 0 11=0, 1i2=0, o=0
f 2 1i1=0, iz2=1, o=l
i 4 11=1, 1i2=0, o=l
i 6 11=1, iZ=1, o=l
(b)

Fig. 60 Illustration of use of the wor-type net and simulation results
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Logic
value of i1

Logic
value of i2

Logic
value of 0

Remarks

0

0

]

Mo contention

0

1

1

Contention resolved according to wor

declaration

]

1

Contention resolved by the stronger signal

1

1

No contention

Observations:

Many synthesizers do not support wired-or logic, wand and wor may be used to

Table 12 Output values for different inputs of the design in Fig.60

Fig.59 Synthesized version of the module with the wor-type net

advantage when supported by the synthesizer.

supported by some.

1127Tri

clarity. Similarly, Triand and trior are the counterparts of wand and wor, respectively.

The net triand is functionally identical to the net wireand. Similarly, the net trior is
functionally identical to the net wireor.

All synthesizers support wire. Triand, trior, triO, and tril (discussed below) may not be

The keyword tri has a function identical to that of wire. When a net is driven by more
than one tri-state gate, it is declared as tri rather than as wire. The distinction is for better

Example 14: Illustration of tri-type net

Consider the design segment in Fig.62. Here the signal on net out is controlled by the
control signal En. If En = 1, signal a is steered to the net out and the output of gate g2 is tri-
stated. On the other hand, if En = 0, signal b is steered to the net out and the gate g1 is tri-
stated. If the buffers are controlled by independent Enable signals, the output is resolved
according to the respective strengths.
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tri out;

wirea, b, En;
bufifl g1(out, a, En);
bufif0 g2(out, b, En);

Fig.62 A segment of a design to illustrate tri type of net

11.3 Tri0 and tril

If the output of a tri-state buffer is to be pulled up to the 1 state when tri-stated, it is
declared as net tril. Similarly, it is declared as triO if it is to be pulled down to O state when
tri-stated. TriO and tril provide respective default outputs and avoid any following circuit
having a tri-stated input. In turn, it may manifest as an added load at the concerned gate
output. The example in Fig.63, which shows a design segment, illustrates an application.
Table 13 lists the output values of signals considered in the design segment of Fig.63.

Referring to the figure (and the table), one can see that when En = 0, all three buffers
g0, g1, and g2 are off. Net 03, being a wire is tri-stated and is in z state. However, net o1,
being of tri0 type, is pulled down to O state irrespective of the input value. Net 02, being of
tril type, is pulled up to 1 state. When En = 1, all three buffers are ON and the respective
outputs follow the input. Thus though g0, g 1, and g2 are functionally identical, they
behave differently due to the difference in the type of the respective output nets.

Reset, Chip Enable and similar signals can be pulled up or down as required with tri0O
or tril; this signifies the normal status -that is, the chip is disabled or the reset is disabled.
As and when the chip is to be enabled, the same is done by enabling the buffer for the
required period. Similarly, the reset can be activated for a specified period to reset the chip;
subsequently, the reset can be deactivated to restore normal operation of the chip.

tril ol;

tril o2;

wire 03;

bufifl g0 (o1, |, En), g3 (02, |, En);
buifl g1(o3, |, En);

Fig. 63 A segment of a design to illustrate tri0 and tril types of net

Logic value of | Logic value of | Logic value of | Logic vale of Logic value of
| En ol o2 o3
0 0 0 1 Z
0 1 1] i} 0
1 ] 1] 1 Z
1 1 1 1 1

Table 13 Output values for different inputs of the segment in Fig.63
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11.4 supply0 and supplyl

Supply0 and supplyl are the keywords signifying the high- and low-side supplies.
Nets to be connected to the V.. supply are declared as supplyl, and those to be grounded are
declared as supplyO.

115 Ambiguous Strengths

Certain x or z type of input port values of gate primitives can lead to outputs of
apparently ambiguous strengths. A number of such situations can arise. Such cases are
brought out and illustrated in the LRM. Nevertheless, such ambiguous situations may be
avoided in practice.

11.6 Combining Delays & Strengths

One can combine delays and strengths in net declarations as well as in instantiation of
gate primitives. The formats for the same are illustrated below

Wire (drive_strength_1, drive_strength_0) # (delay_0_1, delay 1 0,turn_off_delay)
signall, signal2;

Gate type (drive_strength_1, drive_strength_0) # (delay 0 _1, delay 1 0,
turn_off_delay) instance_1(signall, signal2);

For each of the delays above, one can also specify the minimum, typical, and
maximum values. Such values can be specified in terms of constant expressions also.

12. DESIGN OF BASIC CIRCUITS

Elementary gates are the basic building blocks of all digital circuits - whether
combinational, sequential, or involved versions combining both. Conversely, any digital
circuit can be split up into constituent elementary gates. Any digital circuit however involved
it may be, can be realized in terms of gate primitives. The step-by-step procedure to be
adopted may be summarized as follows:

Draw the circuit in terms of the gates.
Name gates and signals.

Using the same nomenclature as above, do the design description.

A wonpoE

As the functional blocks like encoder, decoder, half-adder, full-adder, etc., get more and
more involved, treat each as a building block with corresponding inputs and outputs.

5. Make more involved circuits in terms of the building blocks — as far as possible. Each
block within another block manifests as an instantiation of one module within another.
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Example 15: ALU

We consider the design of an ALU as an example of a relatively complex design. The ALU

considered carries out four functions:

» Addition of two 4-bit numbers.

» Complementing all the bits of a 4-bit vector.
» Bit-by-bit AND operation on two nibbles.

» Bit-by-bit XOR operation on two nibbles.

module addd4dg({sum,carry,a,b,cin);
input[3:0]a,b;

input cin;

output[3:0] sum;

output carry;

wire [2:0]cc;
al{sum[0],cc[0],a[0],b[0],cin);
al{sum([l],cc[l],all]l,b[l],cc[0]);
az{sum([2],cc[2],al[2],b[2],cc[1]);:
aldisum([3],carry,a(3],b[3],cc[2]);
ndmodule

-t
hi]

i
W

4

M Fh Fh

module tstadddg; //Test bench
reg[3:0]a,b;

reg cin;

wire[3:0] sum;

wire carry;

adddg gg (sum,carry,a,b,cin);

initial
begin
a =4'h0;b=4"h0;cin=0;

end

always

begin
#2 a=4'h0;b=4"h0;cin=1"b0;
#2 a=4'hl;b=4"'h0;cin=1"bl;
#2 a=4'hl;b=4"'h0;cin=1"bl;
#2 a=4'h5;b=4"h3;cin=1"b0;
#2 a=4'h7;b=4"'h0;cin=1"bl;
#2 a=4'hB;b=4"h9;cin=1"bl;
#2 a=4'h0;b=4"h0;cin=1"h0;
#2 a=4'hb;b=4"h7;cin=1"b0;
#2 a=4'h0;b=4"h0;cin=1"h0;
2 a=4'hf;b=4"hf;cin=1"b0;
#2 a=4'hf;b=4"hf;cin=1"bl;

end

initial Smonitor{S$time,"™ a = %b, b = %b, cin = %b,

coutsum = %b, outcar = %b ", a, b, cin, sum, carry);

initial #30 Sstop ;

endmodul e

Fig.64 a 4-bit adder module and its test bench
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A set of 2 mode select bits selects the function to be carried out from amongst the
above four. The design has been evolved in a step-by-step manner. Fig.64 shows a 4-bit
adder module and a test-bench for it. The simulation results are given in Fig.65. The adder
module is built up by repeated instantiation of the full-adder module. The synthesized
version of the adder is shown in Fig.66. The full-adder module instantiations appear here as
black boxes with respective inputs and outputs.

cutput
# 0 a =0000,b =0000,cin = 0,outsum =0000, outcar =0
# 2 a =0001,b =0000,cin = 0,outsum =0001, outcar =0
# 4 a =0001,b =0000,cin = 1l,outsum =0010, outcar =0
# 6 a =0001,b =0001,cin = 1,outsum =0011, cutcar =0
# 8 a =0101,b =0011,cin = 0,outsum =1000, cutcar =0
#10 a =0111,b =0110,cin = 1,cutsum =1110, cutcar =0
$#12 a =1000,b =1001,cin l,outsum =0010, cutcar =1
$#14 a =1010,b =0001,cin = 1,cutsum =1100, cutcar =0
#lé a =1011,b =0111,cin = 0,outsum =0010, outcar =1
#18 a =1000,b =1000,cin = 0,outsum =0000, outcar =1
#20 a =1111,b =1111,cin = 0,outsum =1110, cutcar =1
#22 a =1111,b =1111,cin l,outsum =1111, cutcar =1
#24 a =0001,b =0000,cin = 0,cutsum =0001, outcar =0
#26 a =0001,b =0000,cin = 1,ocutsum =0010, cutcar =0
#28 a =0001,b =0001,cin = 1,cutsum =0011, cutcar =0
Fig.65 Simulation results of Fig.64
a2
a[30][ > a et
blaoj[ > i S ———
—n
fa
[ -
al
a cout
b sum——
—cin
fa
* a5
a  cot——— rcarry
al [ 3 b sUMm [ >sum[3:0]
a cout cin

] SLm ﬂ &
cin D— cin

fa

Fig.66 Synthesized circuit of the adder module
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Fig.67 shows a module to AND two nibbles. It is done through direct instantiation
of AND gate primitives for two inputs. The corresponding synthesized circuit is shown in

Fig.68.

in[o1,
_ out
a[3:0] [ [ in[1]

module andgd(c,a,b);
input[3:0]a,b;

—

output [3:(

]

1c;
and({c[0],a[0],b[0])
and(c[1l],al[l]l,b[1])
and(c[2],al[2],b[2])
and(c[3],al[3],b[3])

endmodule

Fig.67 A 4-bit Adder Module

out

out

i1, X1

out

Fig.68 Synthesized circuit of the andg4 module

The module in Fig.69 carries out the bit-wise XOR operation on 2 nibbles. Its
synthesized circuit is shown in Fig.70. Similarly, the module in Fig.71 complements 2

nibbles in a bit-wise manner. The corresponding synthesized circuit is shown in Fig.72.

Il B.Tech—1 SEM

module xorg(c,a,b);
input [3:0]a,b;
/finput cen;
coutput[3:0

le
wire [3:0]ecc;
xor ®0(c[0],a[0],b[0])
xor xl(c[l]l,al[l]l,b[1l])
xor x2(c[2],al[2]l.b[2])
xor x3{(c[3],al3],b[3])

endmodul e

Fig.69 A 4-bit XOR module
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out .
T c[3:0]

b[3:0][ >

out
‘,_

in[1 ix1
r . EU} D_,]Dut
in

Fig.70 Synthesized circuit of the XOR module

module compl(c,a);
input[3:0]a;
output[3:0] c;
not{c[0],a[0]) ;
not{c[l],al[l]);
not{cl[2],al2]) :
not({c[2],al3]);

endmodule

Fig.71 A module to complement a 4-bit vector

ix1
a[3:0][ >—p—0 out c[3:0]

ix3

b n out
| ix5

! 1N out
_ ix7

| in out

Fig.72 Synthesized circuit of the module in Fig.71

A 2-bit binary number with its 4 distinct states can be used to select any one of the 4
desired functions; it calls for the use of a 2-to-4 decoder. Such a module is shown in Fig.73,
and its synthesized circuit is shown in Fig.74.
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module dec?2 4 (a,b,en);
cutput [3:0] a;

input [1:0]b;

input en;

wire [1l:0]bb;

not (bb[1]1,b[1]1),(bb[0],B[0]);
and{(a[0] ,en,bb[l],kb[0]}), (a[l].,en,bk[1],[0]),
(a[2] ,en,b[1],bb[0]), (a[3],en,b[1],b[0]):
endmodul e
Fig.73 A 2-to-4 decoder module
il inr ;
L in[1] gl a[3:0)
. 11
g 213 o out
'__U‘ﬂout | W |
anD infcy / e
. | : 1
b[1 .nlD—l X3 ix5 bl t
in out fn[D] haut inf] -
i1 ] :
» |n[1]m15
Ix out
b in ot in[d]

Fig.74 Synthesized circuit of the decoder module

As explained above, the decoder outputs can be used to select anyone of the 4
functional outputs and steer it to the final output; a 4-to-I mux serves this purpose. The mux
module is shown in Fig.75; its synthesized circuit is in Fig.76.

module muxd lalu(y.i,e);
input [3:0] i;

input e;

putput [3:0]v;

bufifl gl {y[3],1[3],2);
bufifl g2 ({y[2],1[2],e);
bufifl g3(y([l],1([1],e);
bufifl g4 (y[0],1[0],e);

endmodule

Fig.75 A 4-to-1 mux module
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tri_y(3)

i[3:0] n En;“l‘e y[3:0]
e >
ri_v{2)
in out
[ enable
iyl
! in %3 out
enable
tri_v({0)
in out
enable

Fig.76 Synthesized circuit of the mux module

The overall ALU module is shown in Fig.77. It instantiates all the above modules.
Depending on the mode specified, one of the four functions is selected by the 2-to-4 decoder;
its output is multiplexed on to the output by the 4-to-1 mux. The ALU module here has been
synthesized and shown in Fig.78. Each functional block instantiated in Fig.77 appears here as

a corresponding distinct black box.

More functions can be added, if desired, to make the ALU more comprehensive. The
ALU size can be increased to 16 or 32 bits by repeated instantiation of the 4-bit module in a

more comprehensive module.

module alu 4g{a,b,c,carry,cin, cen, s) ;
input [3:0]a,b;

input[1:0]s;

input cen,cin;

cutput [3:0]c¢c;

output carry;

wire [3:0] datal,datal,dataZ,data3,e;
wire carryl

dec?2 4 mbS(e,s,cen);

adddg ml (datal,carryl,a,b,cin) ;

compl mZ (datal,a);

xorg m3(dataZ,a,b);

andgd md (data3,a,b);

bufifl gS{carry,carryl, cen);

muxd lalu mé(c,datal,e[0]);

muxd lalu m7 (c,datal,e[1l]);

muxd lalu mB{c,dataz2,e[2]);

muxd4d lalu m2 (c,data3, e[3]);

endmodul e

Fig.77 A 4-bit ALU module
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[ >carry

m2 B y[30] ] > C[3:0]
—|a[3:EI] 0] i[3:0]
campl muxd Talu
rmd
i Y[ 30—t
W[ 50] c[3:0] i[3:0]
B[3:0] [ — h[3:0] ruxd_Talu
T I e | andgd il
m3 = y[30] p—<
B[ 3:0] 2[3:0] i[3:0]
[ (0] ruxd _Talu
X0Ig e
a[30] Carry i[3:0]
b[30] sum[3:0] ruxd _Talu
cin [ _»—————cin tri_carry
adddg in[™, out
L"'Igr’uable
M5
s[1:0][ b[1:0] a[3:0]
cen[_»——e—en
decd 4
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Fig.78 Synthesized circuit of the ALU module
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MODELING AT DATAFLOW LEVEL

13. INTRODUCTION

Gate level design description makes use of the gate primitives available in Verilog.
These are repeatedly and judiciously instantiated to achieve the full design description.
Digital designers familiar with the basic logic gates and SSI / MSI circuits can describe the
desired target circuit in terms of them on paper and proceed with the design description based
on them. It is practical for comparatively smaller designs - say those involving tens of gates.
One can define modules in terms of primitives involving tens of gates and instantiate them in
macro-modules. This increases the complexity of designs that can be handled by one order.
Beyond that the gate level design description becomes too complicated to be practical.

Data flow level description of a digital circuit is at a higher level. It makes the circuit
description more compact as compared to design through gate primitives. We have a number
of operands and operations representing the simulations directly or indirectly. The operations
are carried out on the operand(s) in singles or in combinations. The results are assigned to
nets. The operand- operation-assignments representing data flow are carried out repeatedly to
complete the design description. Further, these can be combined judiciously with the gate
instantiations wherever necessary. With such combinations, design description of a
comprehensive nature can be accommodated.

13. CONTINUOUS ASSIGNMENT STRUCTURES
A simple two input AND gate in data flow format has the form
assignC =a && b;

Here “assign'" is the keyword carrying out the assignment operation. This type of assignment
is called a continuous assignment.

» aand b are operands - typically single-bit logic variables.

» "&&" is alogic operator. It does the bit-wise AND operation on the two operands a and b.

is an assignment activity carried out.

» C is a net representing the signal which is the result of the assignment. In general, an
operand can be of any one of the following types:

* A constant number [including real].

» Net of a scalar or vector type including part of a vector.

* Register variable of a scalar or vector type including part of a vector.
* Memory element.

» A call to a function that returns any of the above. The function itself can be a user-defined
or of a system type.
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» There are other types of operators as well. All types of combinational circuits can be
modeled using continuous assignments. One need not necessarily resort to instantiation of

gate primitives.

An AND gate module which uses the above assignment is shown in Fig.79. The test
bench for the same is shown in Fig.80, and the waveforms of nets a, b, and ¢ obtained with
the simulation are shown in Fig.81. The simulation software used has the facility to capture
the waveforms of selected signals in the "ran" phase; this has been invoked to get the
waveforms in Figure 6.3. No separate $monitor command is included in the test bench of

Fig.80.

module andgdfic,a,b);
cutput c;

input a,b;

wire c:

assign c = a&eb;
endmodule

Fig.79 A module with an AND gate at the data flow level

module tst andgdf; //TESTBENCH

reqg a,b;
wire ¢;
initial
begin
a= 1"b0;
bh = 1"b0;
#i a = 1"bl;
fd = o b
#d a = 1"bl;
iHd b = 1"b0;
td a = 1'"hil;
end

andgdf gl {c,a,b);
initial #20 Sstop;
endmodul e

Fig.80 Test bench of Fig.79

=)

LS

0 10 20

ns —=

Fig.81 Input and Output Waveforms
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Multiple assignments can be carried out through a direct extension of the structure
adopted in the above case. Consider the AOI gate in Fig.82. A few patterns of the

assignments for the circuit are given in Fig.83 to Fig.84.

Multiple assignments can be carried out through a direct extension of the structure
adopted in the above case. Consider the AOI gate in Fig.82. A few patterns of the

assignments for the circuit are given in Fig.83 to Fig.85.
a®— Ne

|
be—1_~ I—V."'“\gl i

SN
CO—1 TN f
) B

de—

Fig.82 An A-O-1 Gate

assign e = a&sb, f = c&&d, gl = e|f, g = ~gl;

Fig.83 Data flow level assignment statements for A-O-I gate

assigne = a & b, £f=¢c & 4
assigngl =¢|f g=~gl;

Fig.84 Another set of data flow level assignments for A-O-I gate

assigne = a & b;
assignf =c & 4
asgsigngl = e | f;
assigng = -gl;

Fig.85 Another set of data flow level assignment for A-O-1 gate

Observations:

» The semicolon terminates an assignment statement. Commas separate different

assignments in an assignment statement.

* "|"is the bit-wise OR operator and the bit-wise negation operator in Verilog.

» All the quantities in the left-hand side of a continuous assignment have to be of net type.

Thus e, f, g, and gl have to be declared as nets.

» All the operations in an assignment are evaluated whenever any of the operands in the
assignment changes value. Further, all the assignments are carried out concurrently.

Hence the order of the assignments or the statements is immaterial.

e The right-hand sides of assignment statements can be nets, legs, or function calls. Here a,

b, ¢, and d can be nets or legs. All other variables have to be nets.

The module for the A-O-I gate of Fig.79 is given in Fig.86 - it is formed around the

assignment statement of Fig.83. The same can be tested through a test bench.
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13.1 Combining Assignment and Net Declarations

The assignment statement can be combined with the net declaration itself making the
assignment implicit in the net declaration itself. Thus the two statements

wire C;
assignC=a &b;
Can be combined as wireC=a&Db;

The above simplification cannot be carried over to multiple declarations. With this
proviso, the module of Fig.86 can be modified as shown in Fig.87. In the modules of Fig.86
and Fig.87, a, b, ¢, and d are declared as input and g as output. These would be taken as nets
if there are no separate declarations concerning their types. However, the intermediate
quantities - e, f, and gl— should be declared as wire. Synthesized version of the A-O-I
circuit is shown in Fig.88.

module aoni(g,a,b,c,d);

output g;

input a,b5,c,d;

wire e, £,9),9;

assign e = a-&& bf = ¢ && 4y gl = & | £ g=~gl;
endmodule

Fig.86 A compact description of the AOI module at the data flow level
module aoild(g,a,b,c,d);

outpuat g;

Input a,b,o,d;

wire q;

wire e = a && b;
wire £ = c && d;
wire gl = el |£:
assign g = ~gl;

endmodule

Fig.87 Alternate design module to realize the A-O-I gate

Fig.88 Synthesized circuit of the A-O-1 gate module
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13.2 Continuous Assignments and Strengths

A net to which a continuous assignment is being made can be assigned strengths for
its logic levels. The procedure is akin to the strength allocation to the outputs of primitives.
The AOI gate of Fig.87 is modified with strength allocations to the output and is shown in
Fig.89. The assignment to g can be combined with the wire declaration into a single
statement as

wire (pulll, strongO)g = ~g1,;

As mentioned earlier, one can have only one assignment in the statement here. In a
bigger design, g in Fig.89 can be assigned to other expressions or primitives also.

module aoid (g, a, b, c, d);
output g;

input a, b, ¢, d;

wire g;

wiree =a&&b;

wire f =c &&d;

wire gl=e||f;

assign (pulll, strong0)g=-gl;
endmodule

Fig.89 The A-O-I1 gate with strength allocation

14. DELAYS AND CONTINUOUS ASSIGNMENTS

Delays can be incorporated at the data flow level in different ways. Consider the
combination of statements in Fig.90. The assignment takes effect with a time delay of 2 time
steps. If a or b changes in value, the program waits for 2 time steps, computes the value of ¢
based on the values of a and b at the time of computation, and assigns it to c. In the interim
period, a or b may change further, but c changes and takes the new value only 2 time steps
after the change in a or b initiates it. Typical waveforms for a, b, and c are shown in Fig.91.
Note that the changes in a and b of duration less than 2 time steps are ignored vis-a-vis
assignment to the net c. The following may be noted with respect to the waveforms:

e achangesat0ns, 2 ns,5ns, 8ns,9ns, 12 nsand 13 ns; b changes at 0 ns, 2 ns,6ns,8ns
and 13 ns. All these trigger changes toc.

¢ Inevery case change to C comes into effect with a time delay of 2 time steps - that is,
at the 2nd, 4th, 7th, 8th, 10th, 11th, 14th and 15th ns, respectively.

e Whenever C changes, its new value is decided by the values of aandb at that instant
of time. In effect, ¢ changes at 2nd, 4th and 7th ns only.

wirec, a, b;
assign #2 c=ad&b;

Fig.90 Delays with assignments

The program segment in Fig.91 also gives the same output as shown in Fig.92.
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wire a,b;
wire #2c=aé&b;

Fig.91 Alternate design description for delays with assignments

L]

Ly —
=
LA

Mns —iw

Fig.92 Input and Output Waveforms

If the time delay is in the net and not in the assignment proper, its effect is not any
different. Consider the program segment in Fig.93. Here the changes in the values of d are
computed immediately following those in a and b. The assignment takes effect
immediately. The delay in the net C causes a delay of 2 time steps in the assignment to C.
Such a delay is not present for d. Typical waveforms for the program segment are shown in
Fig.94. Note the following:

achangesat 2 ns, 5ns, 8 ns, 9 ns, 12 ns and 13 ns; b changes at 2 ns, 6 ns, 8 ns and 13

ns. All these trigger changes to C and d also.

In every case, change to C comes into effect with a time delay of 2 time steps - that is, in
effect, ¢ changes at 2nd, 4th and 7th ns only.

Whenever C changes, its new value is decided by the values of a and b at that instant of

time.

In every case, changes to d come into effect immediately.

wire a,b, d;
wire #Z c;
assign c=a & b;
assign d=a & b;

Fig.93 Combining delays with assignments
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Fig.94 Input and output waveforms

15. ASSIGNMENT TO VECTORS

The continuous assignments are equally applicable to vectors. A single statement can
describe operations involving vectors wherever possible. This is illustrated in the adder
module in Fig.95, which adds two 8-bit numbers. Here it is assumed that the sum is also of 8
bits. However to account for the possibility of a carry bit being generated in the course of the
addition process, it is desirable to increase the vector size of ¢ by one bit.

module add 8 (a,b,c);
input[7:0]a, b;
output[7:0]c;

assign ¢ = a + b ;
endmodule

Fig.95 An Adder module at data flow level

15.1 Concatenation of VVectors

One can concatenate vectors, scalars, and part vectors to form other vectors. The
concatenated vector is enclosed within braces. Commas separate the components -scalars,

vectors, and part vectors. If a and b are 8- and 4-bit wide vectors, respectively and c is a
scalar

{a, b, c]

stands for a concatenated vector of 13 bits width. The vector components are formed in the
order shown - ¢ is the least significant bit and a[7] the most significant bit and the other bits
are in between in the order specified. The concatenation can be with selected segments of
vectors also. For example,
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{a(7:4), b(2:0)}

represents a 7-bit vector formed by combining the 4 most significant bits of vector a with the
3 least significant bits of vector b. The size of each operand within the braces has to be
specified fully to form the concatenated vector. Hence unsized constant numbers cannot be
used as operands here.

Example 16: Eight-Bit Adder

Fig.96 shows the design description of an 8-bit adder, where the output vector is
formed directly by concatenation. The adder takes a carry input and gives out a carry output.
The adder module here can form the "seed" adder block in a multi- byte adder chain.

module add 8 c(c,cco,a,b,cc1);
input[7:0]a,b;

output[7:0]c;

inpot cois

output cco;
assign {cco,c} = (a + b + cc1);
endmodule

Fig.96 A complete 8-bit adder module at data flow level

When it is necessary to replicate vectors, scalars, etc., to form other vectors, the same
can be arrived at in a compact manner using the repetition multiplier again through
concatenation. Thus,

{2{p}} represents the concatenated vector {P, P}
{2{p}, q} represents the concatenated vector {p, p, q}
The two statements
assign GND=supply0;
p={8{GND}};
together ground the 8 bits of the vector p.

Concatenation operation can be nested to form bigger vectors when component combinations
are repeated. For example,

{a,3{2{b, c}, d}}

is equivalent to the vector

{a,b,c, b,cd b,cDbcdb,cbcd}
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16. OPERATORS

A set of operators is available in Verilog. The operator symbols are similar to those in
C language. With these operators we can carry out specified operations on the operands and
assign the results to a net or a vector set of nets as the case may be.

16.1 Unary Operators

Unary operators do an operation on a single operand and assign the result to the
specified net. The unary operators in Verilog are given in Table 6.1. All unary operators get
precedence over binary and ternary operators. The operators "+" and preceding an integer or
a real number change its sign. These are also unary operators, though not separately listed in
Table 14.

Operator type Symbol | Remarks

Logical negation ! Only for scalars
Bit-wise negation For scalars and vectors

Reduction AND & For vectors — yields a single bit output
Reduction NAND ~&
|

Reduction OR
Reduction NOR ~
Reduction XOR A
Reduction XNOR | ~" or "~

Table 14 Unary Operators and their Symbols

16.2 Binary Operators

Most operators available are of the binary type. A binary operator takes on two
operands; the operator comes in between the two operands in the assignment. The following
are to be noted:

e The arithmetic operators treat both the operands as numbers and return the result as a
number.

e All net and reg operand values are treated as unsigned numbers.
e Real and integer operands may be signed quantities.
e If either of the operand values has a zero value, the entire result has a zero value (?).

The result of any arithmetic operation — with the "+" or " or with any of the other
arithmetic operators — will have an x value if any of the operand bits has an x or a z value.

Il B.Tech—1 SEM 106 DDTV




16.2.1 Arithmetic Operators

The arithmetic operators of the binary type are given in Table 15. The modulus
operand is similar to that in C language - It provides the remainder of the division of two
numbers. The module in Fig.95 is an example of the illustration of the use of the arithmetic
binary operator "+" (for addition). Other arithmetic operators are also used in a similar
manner.

Operand type | Symbol | Remarks

Multiplication *
Division The result is X if the denominator is zero
Modulus %o
Addition +

Subtraction -

Tablel5 Arithmetic Operators and their Symbols

Observations:

e Ininteger division the fractional part of the result is truncated and ignored.

e If any bit of an operand is x or z in an arithmetic operation, the result takes the x value.

e If the first operand of a modulus operator is negative, the result is also a negative number.

Depending on the type of definition of a number, a modulus operation can lead to
different results. Typical examples are given in Table 16.

Expressions involving | Result of the
: Remarks
modulus operator operation
15% 5 0 Results are obvious
14 % 5 4
4'hf % 5 ] The numbers 4’hf and 4’he are in hex format
A'he % 5 4 with decimal values of 15 and 14, respectively.
But the denominator 5 is in decimal form.
6'ols %5 3 6’015 is an octal number with a decimal value
of 13.
4 % 3 -1
4 % =3 [llegal form

Table 16 Typical modulus operations and their results
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16.2.2 Logical Operators

There are two logical operators involving two operands. The operands concerned can
be variables or expressions involving variables. In both cases the result of the operation is a
single bit of value 1 (true) or O (false). If a bit in one of the operands is x or z, the result of
evaluation of the expression has an x value. The operator details are shown in Table 17. The
modules in Fig.86 and Fig.87 are examples of the illustration of the use of logical binary
operators.

Operator type Symbol Possible output value
g:u &”& Single-bit output

Table 17 Binary Logical Operators and their Symbols

16.2.3 Relational Operators

There are four relational operators; their details are shown in Table 18. A relational
operator treats both the operands as binary numbers and compares them. The result is a 1
(true) bit or a O (false) bit. If a bit in either operand is x or z, the result has x (unknown)
value. The operands can be variables or expressions involving variables. Operands of net or
reg type are treated as unsigned numbers. Real and integers can be positive or negative (i.e.,
signed) numbers.

Operator type Symbol Possible output value
Greater than = Single-bit output
Less than <

Greater than or equal to =

Less than or equal to <=

Table 18 Relational Operators and their Symbols

16.2.4 Equality Operators

The equality operator makes a bit-by-bit comparison of the two operands and
produces a result bit. The result bit is a 1 (true) if the operand condition is satisfied;
otherwise it is O (false). The operands can be variables or expressions involving variables. If
the operands are of unequal length, the shorter one is zero filled to match the larger operand.
The operators in this category are only of two types - those to test the equality and those to
test inequality. The four operators in this category are given in Table 19,
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Possible

Operand T
bl Description of operand logical value
symbol .
of nesult
- (The symbol comprises two consecutive equal signs.) If the

two operands are equal bit by bit, the result 1s 1 (true); else the 0,1, 0rx
result 1s 0 (false). If either operand has a x or z bit, the result is
-

= (The symbol comprises of an exclamation mark followed by an
equal sign.) A bit-by-bit companson of the two operands
made. The resultis a 1 if there is a mismaich for at leastonebit | 0,1, 0rx
positon.

== | (The symbol comprises of three consecutive equal signs.) The
operand bits can be 0, 1, x, or z. [fthe two operands match
on a bit by bit basis, the result 15 a 1 (true) bit; else it 15 0 (false). 0orl
Note that the result 1s never x here.

l— (The symbol comprises an exclamation mark followed by 2
consecutive equal signs). The operand bits can be 0, 1, x, or z.
If the two operands do not match on a bit by bit basis, the result
15 a 1 (true) bat; else 1t 1s O (false). Note that the result is never
x here.

{or ]

Table 19 Equality Operators and their Symbols

16.2.5 Bit-wise Logical Operators

The operator does a specified bit-by-bit operation on the two operands and produces a
set of result bits. The result is (bit-wise) as wide as the wider operand. If the width of one of
the operands is less than that of the other, it is bit-extended by filling zero bits and the widths
are matched. Subsequently, the specified operation is carried out. If one of the operands has
an x or z bit in it, the corresponding result bit is x. Either operand can be a single variable or
an expression involving variables. Table 20 gives the four operators of this category.

Operator type | Symbol | Possible result
AND &
OR | .
KOR 0,1, orx
XNOR | ~* or '~

Table 20 Logical Operators and their Symbols
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16.2.6 Operator Truth Table

The truth tables for different types of bit-wise operators are given in Table 21. Note
that an z input is treated as an x value.

AND OR
Input 2 Input 2
] 1 X 0 1 X
g 1] ] 0 ] g 0 ] 1 X
g 1 1 0 | X g 1 | | 1
X ] X X X X 1 X
XOR XNOR
Input 2 Input 2
- ] 1 X o ] 1 X
3] 1 1 0 210 0 1 1 X
& X X X X = X X X X
Negation
Input ] 1 X
Cutput 1 ] X

Table 21 Truth Tables for Bit-wise Operators

16.2.7 Shift Operators

Table 22 shows the two operators of this category. The « operator executes left shift
operation, while the » operator executes the right shift operation. In either case the operand
specified on the left is shifted by the number of bits specified on the right. The shifting is
done irrespective of whether the bits are 0, 1, x, or z. The bits shifted out are lost. The
vacated positions created as a result of the shifting are filled with zeroes. If the right operand

is X or z, the result has an x value. If the right operand is negative, the left operand remains
unchanged.

Operand Lypical Operation
usage
A>>b | The set of bits representing A are shified right repeatedly b times.
A<< b | The set of bits representing A are shified left repeatedly b times.
Table 22 Shift type Operators and their Symbols
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16.3 Ternary Operator

Verilog has only one ternary operator - the conditional operator. It checks a condition
and does a branching. It is a versatile and powerful operator. It enhances the potential of
design description substantially. The general form is

A?b:c

The conditional operation is made up of two operators - "?" and - and three operands.
The two operands separate the three operators in the order shown. The operational sequence
of the operation is as follows:

> "A"is evaluated first.
> If Alistrue, b is evaluated.
> If Ais false, c is evaluated.

If A evaluates to an ambiguous result, both b and C are evaluated. Then they are
combined on a bit-by-bit basis to form the resultant bit stream. The result bit can have the
following three possible values:

> 0 if the corresponding bits of b and c are 0.
> 1 if the corresponding bits of b and c are 1.
> X otherwise.
As an example, consider the assignment statement
assigny=W?2 X:z;

where W, X, y and Z are binary bits. If the bit W is true (1), y is assigned the value of X:
otherwise - that is, if W is false (0) - y is assigned the value of Z. The assignment
statement here multiplexes X and Z onto y; W is the control signal here. Consider the
assignment

assign flag = (adrl ==adr2)?1'b1 : 110,

Here adrl and adr2 are two multibit vectors representing two addresses. If the two are
identical, the flag bit is set to zero; else it is reset.

assign zero_flag = (oyte)? 0:1;

All the bits of the byte are ORed together here. The zero_flag is set if the result is zero.
assignC=S?a:b;

The net C is connected to a if S=1; else it is connected to b

The statement realizes a 2 to 1 mux. b and C have to be scalars or vectors of the same
width. The assignment can be expanded to realize larger muxes.

The conditional operator can be nested. Nesting gives rise to a variety of uses of the
operator.
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assign 0=(s==2b00)?10:((s==2b01)?11:

((s==2'b10) ?12:13) );
Innermaost
conditonal
operation

®— Outer conditional operation

€ Outermost conditional operation —— —»

Fig.97 Illustration of nested conditional operations

As an example, consider the formation of an ALU. ALU can be defined in a compact
manner using the ternary operator.

assign d= (fF=add)(at+b): ((FF=subtract)(a-b): ((F~=compl)?~a: ~));

In the example here, f is taken as a control word. If it is equal to the number add, d is
to be equal to the sum of a and b. If f is equal to the number subtract, d is to be equal to the
difference between a and b. If it is equal to the number compl, d is to be the complement of
a. Otherwise (i.e., f=3) d is taken as the complement of b.

16.4 Operator Priority

A clear understanding of the operator precedence makes room for a compact design
description. But it may lead to ambiguity and to inadvertent errors. Whenever one is not sure
of the operator priorities, it is better to resort to the use of parentheses and ensure clarity and
accuracy of expressions. Further, some synthesizers may not interpret the operator
precedence properly. These too call for the apt use of parentheses.

The operators are arranged in tabular form and shown in Table 23. The table brings
out the order of precedence. The order of precedence decides the priority for sequence of
execution and circuit realization in any assignment statement. The following form the basic
rules for the same:

» Unary operators have the highest priority and execute first.

» Subsequently the binary operators execute. Amongst these the algebraic operators have
the highest precedence. Amongst the algebraic operators *, / and % have precedence
over + and - operators.

» Subsequent precedence amongst the binary operators is as shown in the table.
» Conditional operator has the lowest precedence and hence is executed last.

* In any expression, operators associate from left to right. Ternary operator is the only
exception to this; it associates from right to left.
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Unary | & & | | . » N Highest
operators precedence

* ?
Binary — |—..._ — - —
operator r " —

Sl

Ternary . Lowest
operators T precedence

Table 23 Operator Precedence Details

Example 16: BCD Adder

module bed(co, sumd, a, b) ;
input [3:0 ]
output [
output c
wire [2:0] sumb;

assign sumb = a + b;

=

P

=

10) ;
endmodul

module tst bed;//Test bench
reg [3:0]a,b;

wire co;

wire [3:0] sumd;

bed bec({eco,sumd,a,b);
initial

begin

ssign{co, sumd}=(sumb<=4'bL1001)?{1'b0,sumb}: (sumb+4 'b01
-

a = 4'hd ; = 4'h(;
#2 a = 4'hl ; = 4'h(;
2 a 4'h2 ; 4'hl;
#2 a = 4'h4 = 4'h5;
#2 a = 4'hée ; = 4'h6;
#2 a = 4'hd ; = 4'hl;

2 a

end

initial Smonitor($time,"a = %k

oL ey 10

4'hf

F

4'h0;

tb",a,b, co,sumd) ;
initial #16& Sstop;
endmodul e

Fig.98 BCD Adder Module at the Data flow module
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A BCD adder can be formed through a compact assignment using a ternary
operator. The assignment statement has the form

assign {co, sumd} = (sumb<=4'p1001 )?{1 'b0,sumb}: (sumb + 4'b0110;

The adder module using the above assignment and a test-bench for the same are
shown in Fig.98. The synthesized version of the circuit is shown in Fig.99. The results of
running the test bench are given in Fig.100.
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SERL) D _E[B.I:II '|
Fig.99 Synthesized circuit of the BCD Adder
# 0 a =0000 , b= 0000, co = 0 , sumd = Q000
f 2 a 0001 , b o000 , co = 0 , sumd = 0001
£ 4 a =0010 , b = 0001 , co = 0 , sumd = 0011
# 6 2a = 0100 , b = 0101 , co = 0 , sumd = 1001
f 8 a 0110 , b 0110 , co = 1 , sumd = 0010
#10 a = 1101 , b = 0001 , co = 1 , sumd = 0100
$#12 a = 1111 , b = 0000 , co = 1 , sumd = 0101

Fig.100 Results of BCD Adder Module

Il B.Tech—1 SEM 114

DDTV




BEHAVIORAL MODELING

Il B.Tech—1 SEM

UNIT-II

115

DDTV




Contents

e Introduction

e Operations and Assignments
e Functional Bifurcation

e ‘Initial’ Construct

‘Always’ Construct
Examples

Assignments with Delays
‘Walit” Construct

Multiple Always Blocks
Designs at Behavioral Level
Blocking and Non-Blocking Assignments
The case statement
Simulation Flow

‘“if” and ‘if-else’ constructs
‘assign — de-assign’ construct
‘repeat’ construct

‘for’ loop

the “disable’ construct
‘while’ loop

e ‘forever’ loop

e parallel blocks

Il B.Tech—1 SEM 116 DDTV




e ‘force-release’ construct
e Event

Il B.Tech—1 SEM 117 DDTV




UNIT - 11
BEHAVIORAL MODELING

1. INTRODUCTION

Design descriptions at data flow level and gate level are close to the circuit. At every
stage of the design description process, one can relate the modules and the instantiations with
the corresponding logic or sequential blocks and their interconnections. The approach is
practical and effective as long as the gate count remains within a few hundred. An increase in
gate count may still be accommodated, if it is due to an increase in vector size -for example,
when a system designed and tested at the 8-bit level is being scaled up to a 16- or 32-bit
level. But with many of the VVLSI's of today, one has to work at a different dimension - the
circuit can have a million gates. The increase in vector size may still be accommodated at the
data flow level (e.g., 32- or 64-bit systems), since it calls only for scaling of a smaller
design. But increase in terms of functional complexity makes the approach almost intractable
for many designs.

Behavioral level modeling constitutes design description at an abstract level. One can
visualize the circuit in terms of its key modular functions and their behavior; it can be
described at a functional level itself instead of getting bogged down with implementation
details. The description is carried out essentially with constructs similar to those in "C"
language; the design itself is similar to programming in "C", For example, one can describe
an FFT or a digital filter routine in terms of these constructs. The design can be simulated,
debugged, and finalized. This completes the system level structure for the design.
Subsequently, one can expand the design by describing the modules in terms of components
closer to the data flow and gate level models. One can simulate and debug each such
component module, check it for its functionality, integrate it with the main design and test
conformity. Constructs for such layered expansion of design are available in behavioral
modeling. Proceeding with the layered expansion of design, one can have the final design
description at the RTL level itself. However, we may add here that such a top-down activity
is more in the realm of design.

The constructs available in behavioral modeling aim at the system level description.
Here direct description of the design is not a primary consideration in the Verilog standard.
Rather, flexibility and versatility in describing the design are in focus. One should be able to
describe the design and simulate it for its functionality. Hence the constructs aim essentially
at these two aspects of the design. Synthesis tools available from different vendors can
synthesize most of the constructs at the data flow as well as the gate levels, but not all
constructs or combinations possible at the behavioral level can be synthesized. The extent to
which the constructs at the behavioral level are accommodated in synthesis varies with
vendors. The synthesized circuit need not guarantee optimum or near- optimum realization
either. These limitations are in line with the basic purpose of behavioral level modeling
mentioned above - that is, to complete an error or bug- free description and identify the
functional modules required. Their synthesis is more often done following a more detailed
design description at the RTL level.
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2. OPERATIONS AND ASSIGNMENTS

The design description at the behavioral level is done through a sequence of
assignments. These are called ‘procedural assignments' - in contrast to the continuous
assignments at the data flow level.

The procedure assignment is characterized by the following:

»  The assignment is done through the "=" symbol (or the "<=" symbol) as was the case
with the continuous assignment earlier.

»>  An operation is carried out and the result assigned through the "=" operator to an
operand specified on the left side of the "=" sign - for example,

N= ~N;

Here the content of reg N is complemented and assigned to the reg N itself. The
assignment is essentially an updating activity.

»  The operation on the right can involve operands and operators. The operands can be
of different types - logical variables, numbers - real or integer and so on.

»  The operands on the right side can be of the net or variable type. They can be scalars
or vectors.

» It is necessary to maintain consistency of the operands in the operation expression -
e.g.,

N=m|I;

Here m and | have to be same types of quantities - specifically a reg, integer, time,
real, realtime, or memory type of data - declared in advance.

»  The operand to the left of the "=" operator has to be of the variable (e.g., reg) type. It
has to be specifically declared accordingly. It can be a scalar, a vector, a part vector,
or a concatenated vector.

» Procedural assignments are very much like sequential statements in C. Normally they
are carried out one at a time sequentially. As soon as a specified operation on the
right is carried out, the result is assigned to the quantity on the left - for example

N =m +l;
N1=N* N;

»  The above form a set of two procedures placed within an always block. Generally
they are carried out sequentially in the order specified; that is, first m and | are added
and the result assigned to N. Then the square of N is assigned to N1.

»  The sequential nature of the assignments requires the operands on the left of the
assignment to be of reg (variable) type. The basic sequential nature of assignments
here is in direct contrast to the concurrent nature of assignments at the data flow level.
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3.FUNCTIONAL BIFURCATION

Design description at the behavioral level is done in terms of procedures of two types;
one involves functional description and interlinks of functional units. It is carried out through
a series of blocks under an ""always' banner. The second concerns simulation - its starting
point, steering the simulation flow, observing the process variables, and stopping of the
simulation process; all these can be carried out under the ""always' banner, an "initial*
banner, or their combinations.

However, each always and each initial block initiates an activity flow during
simulation. In general, the activity with all such blocks starts at the simulation time and
flows concurrently during the whole simulation process. The concurrent flow of activity with
all processes is characteristic of any behavioral level module. A procedure-block of either
type - initial or always - can have a structure shown in Fig.101.

Type of block is specified here: only two types
are possible;- initial & always

The symbol signifies an event control (only for
always blocks)

Specifies the event which flags off the execution
of the block (only for always blocks)

k 4 ¥
type_of_block @(sensitivity_list)

—» begin; name_of_block

local variable declarations; «

procedural assignment
statements;

—» end

All the activities within the block are enclosed within
the begin-end construct

The procedural statements form the body of the block ——

All variables etc., local to the block are declared at
the beginning of the block

The block can be assigned a name which can be
referred

Fig. 101 Structure of a typical procedural block

Il B.Tech—1 SEM 120 DDTV




A block starts with the declaration of the type of block - that is, initial or always. It
may be followed by the definition of a triggering activity and then the body of the block. The
body may be a single procedural assignment or a group of procedural assignments. In the
latter case the block appears within a "*begin - end" or similar blocks. The initial and
always blocks have distinct characteristics.

3.1. begin — end Construct

If a procedural block has only one assignment to be carried out, it can be specified as
below:

initial #2 a=0;

The above statement assigns the value 0 to variable a at the simulation time of 2 ns. It is
possibly the simplest initial block. More often more than one procedural assignment is to be
carried out in an initial block. All such assignments are grouped together between *begin*
and "end" declarations. Functionally, the construct is similar to the begin end construct in
Pascal or the { } construct in C language. The following are to be noted here:

» Every begin declaration must have its associated end declaration.
* begin - end constructs can be nested as many times as desired.

» For clarity in description and to avoid mistakes, nested begin - end blocks are separated
suitably as shown in Fig.102.

assignments

bagin «

assignments

outermost
block

block

assignments

intermediate

Imnermost

and -+

and -«

Fig.102 Nesting of begin — end Blocks
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3.2. Name of the Block

Any block can be assigned a name, but it is not mandatory. Only the blocks which are
to be identified and referred by the simulator need be named. Needless to say the names
assigned to different blocks have to be different. Names chosen should conform to the rules
for the selection of names to variables. Assigning names to blocks serves different purposes:

» Registers declared within a block are local to it and are not available outside. However,
during simulation they can be accessed for simulation, etc., by proper dereferencing.

» Named blocks can be disabled selectively when desired.

3.3. Local Variables

Variables used exclusively within a block can be declared within it. Such a variable
need not be declared outside, in the module encompassing the block. Such local declarations
conserve memory and offer other benefits too. Regs declared and used within a block are
static by nature. They retain their values at the time of leaving the block. The values are
modified only at the next entry to the block.

4. INITIAL CONSTRUCT

A set of procedural assignments within an initial construct are executed only once -
and, that too, at the times specified for the respective assignments.

req a.b;
initial
begin
a= 1'b0;
b= 1b0;
#2 a=1"bl;
#3 b=1bl;
#1 a= 1'b0;
#1008stop:
end

Fig.103 Typical initial Block

Consider the initial process shown in Fig.103. It is characterized by the following:

* In any assignment statement the left-hand side has to be a storage type of element. It can
be a reg, integer, or real type of variable. The right-hand side can be a storage type of
variable or a net.

» The context decides whether the assignment is of a continuous type or procedural type. In
the latter case it is present within an always or an initial construct.
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» All the procedural assignments are executed sequentially - in the same order as they
appear in the design description. The waveforms of a and b conforming to the
assignments in the block are shown in Fig.104.

start
variables
change

} value

finish
v l
[ \7/ |

+|— l /;V*
a: | / :
+! // |
b I
| | L/ /| |
ﬂ,l 2 4 f,f!f 104 106 t -

Fig.104 Output waveforms for the given initial block

» Initially (at time t = 0 ns), a and b are set equal to zero. At time 2 ns a is made equal to 1.
After 3 more nanoseconds - that is, at the 5th ns — b is made equal to 1.

» After one more ns - that is, at the 6th ns - a is made equal to 0.

» $stop is a system task. 100 ns later - that is, at the 106th ns - the simulation comes to an
end.

Integer values have been used here to decide time delay values. In a more general
case the delay value can be a constant expression. It is evaluated and decided dynamically as
the simulation proceeds.

The initial block above does three controlling activities during the simulation run.
> Initialize the selected set of reg's at the start.

> Change values of reg's at predetermined instances of time. These form the inputs to the
module under test and test it for a desired test sequence.

» Stop simulation at the specified time.

Specific system tasks available in Verilog can be used to tabulate the values of
selected variables. Providing such output display in a desired or preferred format is the
activity of the simulation run. Two system tasks are useful here - $display & $monitor.

By way of illustration consider the simulation routine in Fig.105. It incorporates the
block Fig.103 and two system tasks. The result of the simulation is shown in Fig.106.
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module nil;

regqa, b;
initial
begin
a= 1'bl;
b= 1'b0;
Sdisplay ("display: a="b, b="%b", a, b);
H#2 a=1bl;
#3 b=1bl;
#1 a= 1'bl;
#100 $stop;
end
initial
Smonitor("monitor: a="%b, b="%b", a, b);
endmodule

Fig. 105 Typical module with an initial block

output
# display : a =0 ,b =10
# monitor : a =0 ,b =10
# monitor : a =1 ,b =0
# monitor : a =1 ,b =1
# monitor : a =0 ,b =1

Fig. 106 Output for the test bench

The $display task is a one-time activity. It is executed when encountered. At that
instant in simulation the values of a and b are zero and the same are displayed. In contrast,
Smonitor is a repeated activity. It need be present only once in a simulation routine - all the
specified variables will be monitored. If multiple Smonitor tasks are present in the routine,
only the last one will be active. All others will be ignored. In contrast, the $display task may
appear any number of times in a module. It is executed every time it is encountered.

Simulators have the facility to observe the waveforms and changes in the magnitudes
of different variables with simulation time. The necessary facility is provided with the help
of user-friendly menus and icons. Waveforms of a and b obtained with the test bench of
Fig.105 are shown in Fig.107; they can be seen to be consistent with their values shown in
Fig.106.
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Fig. 107 Output waveforms

4.1 Multiple initial Blocks

A module can have as many initial blocks as desired. All of them are activated at the
start of simulation. The time delays specified in one initial block are exclusive of those in
any other block. Consider the module in Fig.108 which is a modified version of that in
Fig.105. It has four initial blocks. The Smonitor task is declared separately. The simulated
results are shown in Fig.109.

module mill;

initial
reg a, b;
begin
a= 1'b0;
b= 1'b0;
Sdisplay (Stime,"display: a=%b, b="2%b", a, b);
#2 a= 1'bl;
#3 b=1bl;
#1] a= 1b0;
end

initial #1008stop;
initial $monitor ($time, “monitor: a = %b, b ="%b", a, b);

imitial
begin
#2 b=1bl;
end
endmodule

Fig. 108 A Typical module with multiple initial blocks
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utput
# display : a =0 , b=20
# monitor : a =0, b =20
$# monitor : a =0 , b 1
# monitor : a =1, b =1
# monitor : a =1, b =20
# monitor : a =1, b =1
# monitor : a =0 , b =1

Fig. 109 Output for multiple initial blocks

Observations:
% All changes in a are brought about in one initial block.

% Changes to b are specified in two blocks, and both these blocks are executed
concurrently.

% The progress of simulation time in different blocks is concurrent. However, those in
one block are sequential. Changes in b are consistent with this.

% The $stop task is in an independent initial block. Hence simulation is terminated at
100 ns.

% More than one activity may be scheduled for execution at one time instant. Those in
one initial block are executed in the same order as they appear - that is, sequentially.

Thus, the two events a = 1'b0; b = 1'b0;

are executed in the same sequential order - that is, b is set to O after a is set to 0,
although both the activities are scheduled for execution at the same time.

« At 2 ns a changes to 1 and b changes to 0. These two activities are to be done
concurrently. They are in different initial blocks. The order of their execution
depends upon the implementation. This does not cause any anomaly in the present
case. But it can be a potential source of problem in more involved designs and their
simulation.

7.5 ALWAYS CONSTRUCT

The always process signifies activities to be executed on an "always basis." It’s
essential characteristics are:

% Any behavioral level design description is done using an always block.

% The process has to be flagged off by an event or a change in a net or a reg. Otherwise
it ends in a stalemate.

«»»  The process can have one assignment statement or multiple assignment statements. In
the latter case all the assignments are grouped together within a "'begin - end"
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construct.

% Normally the statements are executed sequentially in the order they appear.

5.1 Event Control

The always block is executed repeatedly and endlessly. It is necessary to specify a
condition or a set of conditions, which will steer the system to the execution of the block.
Alternately such a flagging-off can be done by specifying an event preceded by the symbol
"0". The event can be a change in the variable specified in either direction or a change in a
specified direction. For example,

s @(negedge elk) :

executes the following block at the negative edge of the reg (variable) elk.
% @(posedge elk) :

executes the following block at the positive edge of the reg (variable) elk.
< @clk:

executes the following block at both the edges of elk.
The event can be a combination as well.
% @(prtorclr):

With the above event the block is executed whenever either of the variables prt or clr
undergoes a change.

% @(posedge clkl or negedge clk?) :

With the above event the block is executed in two cases - whenever the clock clkl
changes from 0 to 1 state or the clock clk2 changes from 1 to 0. One can specify more
elaborate events by OR'ing individual ones. The following are to be noted:

% The events can be changes in reg, integer, real or a signal on a net. These should be
declared beforehand.

++ No algebra or logic operation is permitted as an event. The OR'ing signifies "execute the
block if any one of the events takes place."

% The edge transition on each event is to be specified separately
++ Note the difference between the following:

> (posedge clkl or clk2): means “execute the block following if clkl goes to 1 state
or clk2 changes state (whether 0 to 1 or 1 to 0)."

> (posedge clkl or posedge clk2): means "execute the block following if clkl goes
to 1 state or clk2 goes to 1 state.”

++ The positive transition for a reg type single bit variable is a change from 0 tol. For a logic
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variable it is a transition from false to true.

% The "posedge’ transition for a signal on a net can be of three different types:
» Oto1l
» Otoxorz
» xorztol

% The "negedge" transition for a signal on a net can be of three different types :-
» 1100
> ltoxorz
> xorztoO

% If the event specified is in terms of a multibit reg, only its least significant bit is
considered for the transition. Changes in the other bits are ignored.

% The event-based flagging-off of a block is applicable only to the always block.

++ According to the recent version of the LRM, the comma operator (,) plays the same role
as the keyword or. The two can be used interchangeably or in a mixed form. Thus the
following are identical:

@ (aorborC)
@ (aorb, C)
@ (a,b, )

@ (a,borc)

6. EXAMPLES

Example 17 A Versatile Counter

We consider a versatile up-down counter module with the following facilities:

<> Clear input If it goes high, the counter is cleared and reset to zero.

<> U/D input If it goes high, the counter counts up; if it goes down, the
counter counts down.

<> The counter counts at the negative edge of the clock.

The counter counts up or down between 0 and N where N is any 4-bit hex number.
The above counter design specifications are implemented in stages. The module in Fig.110 is
an up counter which counts up repeatedly from 0 to a preset number N. A test-bench for the
counter is also shown in the figure. N is an input to the module. The count advances at every
negative edge of the clock. When the count reaches the value N, the count value a is reset to
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0. The simulation results are shown as waveforms in Fig.111.

The periodic clock waveform, the incrementing of a at every negative edge of the
clock and counting of a from 0 to the set value of N can be seen from the figure. The
synthesized circuit of the counter is shown in Fig.112. It has a versatile counter block and a
comparator. The comparator compares the value of a with the set value of N and resets the
counter when the two are equal.

module counterupl(a,clk,N);

input clk;

input [3:0]H;

output[3:0]a;

reg[3:0]a;

initial a=4'b0000;

alwaysl (negedge clk) a=(a==N)7?4'L0000:2+1"'bl;
endmodul e

module tst counterup;//TEST BENCH
reg clk;

reg[3:0]N;

wire[3:0]a;

counterup cl{a,clk,N);

initial
begin

clk = 0;

M = 4'b1011;
end

always #2 clk=~clk;
initial Smonitor(S$time,
endmodul e

"a=%b,clk=%b,N=%b",a,clk,N);

Fig.110 An UP Counter Module

ftat_countenup/clk _I_LJ_I__I_I"I_I__I_LJ_I__I_I"I_I__I_I__

Atst_counterup/M (1011
st _courtenup/a {0000 OO0 00000710700 {00 )10 10T {1 37000 1001 {707 Jap

100ns 10 20 W0 40

Fig.111 Simulation waveforms
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a
aclear

aset
¥ clk_en
ck[ m{>0wt clock
cnt_en  o[3:0] f—m— " a[3:0]
= dara[30]

sclear

sload

updn
Tnter_up_s clear_clock]4

a eq O

N[3:0]

Fig.112 Synthesized Circuit for UP Counter

module counterdn(a,clk, N);
input clk;
input[3:0]N;
output[3:0] a;
reg[3:0]a;

initial a =4'L0000;
always@ (negedge clk) a=|
endmodul e

J?N:a-1"bl;

u
Il
Il

1N

?'. 1]

]

-]

]

]

module tst counterdn();//TEST EENCH
reqg clk;

reg[3:0]H;

wire[3:0]a;

counterdn cci{a,clk,HN) ;

initial

begin
M = 4'b1010;
Clk = 0;

end

always #2 clk=~clk;

initial Smonitor{3time, "a=%b,clk=%b,N=%b",a,clk,N);
initial #3535 Sstop;

endmodul e

Fig.113 DOWN Counter Module
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The module of Fig.113 is a down counter. The count a decrements at the negative
edge of the clock - clk. The counter counts down from N to zero. As soon as the count
reaches the value 0, it is set back to N. The simulation results are shown tabulated in Fig.114
and as waveforms in Fig.115; these can be seen to be consistent with the design module. The
synthesized circuit is shown in Fig.116. The basic blocks - namely versatile counter,
comparator and buffer for the clock - are the same as those for the up counter of Fig.112. The

comparator output loads the value of N back into the counter every time a reaches the set
value of N.
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Fig. 114 Results for DOWN Counter
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Fig.115 Simulation Results

Bl
a
aclear
aset
i clk_en
clk D—mD)C ot clock

EXOI: data[3:0]

ent en of3:0) ——ae— »a[2:0]

sclear

sload

upn
dounter_dn_sload_clock |

a_eq_0

A0
d
b3

Fig.116 Synthesized Circuit for DOWN Counter

The up and down modes of counting have been combined in the up down counter of
Fig.117. A test bench is also shown in the figure. The test results are tabulated in Fig.119 and
also shown as waveforms in Fig.118.

Fig.120 shows the synthesized circuit; the counter block remains the same as in the
last two cases; the mode control part of the circuit has been changed to meet the enhanced
needs. The counting can be seen to be changing from "up" to the "down" type, when the
mode control input u_d changes.
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module updcounter (a,clk,N,u d);
input clk,u d;

input [3:0]N;

output[3:0]a;

reg[3:0]a;

initial a =4'b0000;
aglwaysl (negedge clk)
=(u d)7((a==N)7?4'b0000:a+1'bl): ((a==4'b0000) ?N:a-
1'bl);
endmodul e

module tst updcounter () ;//TEST BENCH
reg clk,u d;

reg[3:0]N;

wire[3:0]z;

updcounter cZia,clk,M,u d);

initial

begin
M = 4'h0111;
ud= 1"b0;
clk = 0;

end

always #2 clk=~clk;

always #34u d=~u d;

initial Smonitor

($time,"clk=%b,N=%b,u d=%b,a=%b",clk,N,u d,a);
initial #64 Sstop;

endmodul e

Fig. 117 An UP / DOWN Counter

G LT I o oy By
Azl _updeaunier/u d 0 |
Ael_vpdeauneer Y T 0111

Asl_updoounter/a 11 AT YOI (0T JOFCCO| AT QA S @ O 0 O R

fd niz 10 |

One  [Drg

Fig. 118 Simulation Results

Il B.Tech—1 SEM 133 DDTV




Oclk=0,N=0111,u d=0

2clk=1,N=0111,u d=0

4clk=0,N=0111,u d=0

oclk=1,N=0111,u d=0

8clk=0,N=0111,u d=0

10clk=1,N=0111,u d=0

12clk=0,N=0111,u d=0

14clk=1,N=0111,u d=0

16clk=0,N=0111,u d=0

18clk=1,N=0111,u d=0

20clk=0,N=0111,u d=0

22clk=1,N=0111,u d=0

24clk=0,N=0111,u d=0

26clk=1,N=0111,u d=0

28clk=0,N=0111,u d=0

30clk=1,N=0111,u d=0
32¢clk=0,N=0111,u d=0,a=0111

d=1

d=1

d=1

d=1

d=1

d=1

d=1

d=1

d=1

d=1

d=1

d=1

d=1

d=1

d=1

- =
o
ol
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o
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34clk=1,N=0111,u
36clk=0,N=0111,u
3Bclk=1,N=0111,u
40clk=0,N=0111,u
42clk=1,N=0111,u
44clk=0,N=0111,u
doclk=1,N=0111,u
48clk=0,N=0111,u
50clk=1,N=0111,u
52clk=0,N=0111,u
54clk=1,N=0111,u
S6clk=0,N=0111,u
5Bclk=1,N=0111,u
60clk=0,N=0111,u
62clk=1,N=0111,u

Fig. 119 Test Bench Results
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Fig. 120 Synthesized Circuit for UP / DOWN Counter

Example 18 Shift Register

Figure 121 shows an 8-bit shift register module along with a test bench for the same.
The register shifts by one bit to the right if r_| = 1 and to the left by one bit otherwise. The
whole shift register is described in a single line of procedural assignment, namely

always@(negedge clk) a=(r_I)?(a>>1'b1 ):(a<< 1’b1);

The simulation results are given in tabular form in Fig.122 and as waveforms in Fig.123.

module shifrlter(a,clk,r 1);
input clk,r 1;

cutput [7:0]a;

reg[7:0]a;

initial a= 8'h01l;

alwayst (negedge clk)
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begin

a={r 1)?(a=>1'bl) : (a<<1'bl);

end
endmodule

module tst shi
reg clk,r 1;
wire [7:0]a;
shifrlter shrr
initial

begin

clk =1'hl;

r 1 = 0Q;
end

frlter;//test-bench

(a,clk,r 1);

always #2 clk =~clk;

initial #16 r 1

initial
Smonitor {$time

s "eclk=%b,r 1 = %b,a =%b

= ]_;

initial #30 5stop;

endmodule

Fig.121 8-bit Shift Register

w.clk,r 1,a)l;

Output
i 0 clk=1, r 1 =0, a = 00000001
i 2eclk=0, r1 =0, a= 00000010
i d clk=1, r 1 =0, a 00000010
i 6 clk=0, r 1 =0 , a = 00000100
i B clk=1, r 1 =0, a = 00000100
it 10 ¢lk=0, r 1 =0 , a 00001000
it 12 ¢lk=1, r 1 =0 , a = 00001000
it 14 ¢lk=0, r 1 =0 , a = 00010000
it 16 ¢lk=1, r 1 =1, a = 00010000
f 18 clk=0, r 1 =1, a 00001000
f 20 clk=1, r 1 =1 , a = 00001000
f 22 ¢clk=0, r 1 =1, a 00000100
i 24 clk=1, r 1 =1, a = 00000100
i 26 clk=0, r 1 =1 , a 00000010
i 28 clk=1, r 1 =1, a = 00000010
Fig.122 Test Bench Results
Hlat_shiFtbardclk, 1 w 1 | | [ 1] |
Ptat_ahifdberd | 1
fat_shiierds  ooooot o {__J00d00 I end i mannd 00T [oinoon IO oioin A0 ojon
"I [T T [ N T [ T T T T T B | [ 1
a0 ns 11 | 0
1B ns
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Example 19 Clocked Flip-Flop

The module for a clocked flip-flop is shown in Fig.124. A test bench for the flip-flop
is also included in the figure. The test results are shown in Fig.125 and Fig.126 as waveforms
and in tabular form, respectively. The input can be seen to be sensed, latched, and presented
as output at every negative edge of the clock. Otherwise the output remains frozen at the last
latched value. The synthesized circuit of the flip-flop is shown in Fig.127.

module dff (do,di,clk) ;
output do;

input di,clk;

reg do;

initial

do=1"'b0;

alwaysl (negedge clk) do=di;

endmodul e

module tst dffbeh () ;//test-bench
reg di,clk;
wire do;
dff dl{(do,di,clk):
initial
begin
clk=0;

di=1"'b0;

end
always #3clk=~clk;
always #5 di=~di;

initial
sSmonitor(Stime,"clk=%b, di=%b,do=%b",clk,di,do) ;
initial #35 Sstop;

endmodul e
Fig.124 A D Flip-Flop Module
sl cilbehad 1
PR I I e e s 1 I I W e i 1 e
Jret_dffhehion 10 ] [ ] [ L |
_IHEI_I.SEIIIIIIII1|:|IIIIIIII2|:|IIIIIIII:]l]IIIIIIII4|:|IIIIIIII5|:IIIIIIIIIE
Ure [In]

Fig.125 Simulation Results
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f 0clk=0,di=0, do=0
f 3clk=1,di=0, do=0
f S5clk=1,di=1, do=0
i 6clk=0,di=1, do=1
f 9clk=1,di=1, do=1
f 10clk=1,di=0, do=1
f llex—d di=0, do=0
f clk=1,di=1, do=0
i lr 21 k=0,di=1, do=1
i 20clk=0,di=0, do=1
f 21clk=1,di=5,dc=1
f 24clk=0,di=0, do=0
f 25clk=0, di= l do=0
i 27clk=1,di=1, do=0
f 3I0clk=0,di=0, do=0
f 33clk=1,di=0, do=0

Fig.126 Test Bench Results

7. ASSIGNMENTS WITH DELAYS

Specific delays can be associated with procedural assignments. The delay refers to the
specific activity it qualifies. A variety of possibilities of specifying delays to assignments
exist.

Consider the assignment always #3 b = a;

simulator encounters this at zero time and posts the entire activity to be done 3 ns
later. Further, by virtue of the always nature of the activity, the assignment is scheduled to be
repeated every 3 ns, irrespective of whether a changes in the meantime. Values of a at the
3rd, 6th, 9th, etc., ns are sampled and assigned to b. Fig.127 shows the waveforms of a and b
with the above assignment and execution of the module in Fig.128. Changes in the values of
a lasting less than 3 ns may be ignored. Specifically, in this case, a took the value of 1 during
the interval 4th ns to the 5th ns which is not passed on to b.

ek |

Fig.127 Clock Waveform using always block
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module dell;

req a,b;
always #3 b=a;
Initial
begin
a=1Db1;
b =1b0;
#1 a = 1b0;
#3 a="1Db1;
#1 a=1b0;
#2 a=1Db1;
#3 a = 1'b0;
end

initial Smonitor($time, " a =%d, b= %d", a, b}
initial #20 $finish;
endmodul e

Fig.128 A module toillustrate delayed assignment

@ is sensed and its value assigned to b at these iuHLuuLHJ

| T I
T [ | ¥
[ |
a r ¥ [
T
b Y v

L —»

Fig.129 Waveforms of a & b

The module of fig.130 is a modified version of that in Fig.128. The activities within
the always block (of a single statement) are carried out whenever the value of a changes.
The sole activity is that of assigning the value of a to b with a delay of 2 ns - that is, 2
ns after a changes sign. The waveform assigned to a as well as the resulting waveform of b is
shown in Fig.131. If a were to remain invariant, b will have no assignment here.
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module delZ;
reqga,b;
always [@(a) #2 b=a;

Initial
begin
a=1b1;
b=1b0;
#1 a = 1b0;
#3 a=1b1;
#1 a=1b0;
#e a=1bf1;
#3 a=1b0;
end

initial fmonitor(ftime," a="%d, b= %d" a, b);
initial #20 $finish;
endmodule

Fig.130 A module to illustrate delayed assignments

L J

Fig.131 Waveforms of a & b

7.1 Intra-assignment Delays

An assignment delay of the type discussed above, delays execution of the whole
assignment by the specified time duration. In contrast, the "intra-assignment™ delay carries
out the assignment in two parts. An assignment with an intra- assignment has the form

A = # dl expression;

Here the expression is scheduled to be evaluated as soon as it is encountered.
However, the result of the evaluation is assigned to the right-hand side quantity a
after a delay specified by dl. dl can be an integer or a constant expression. Consider the example
in Fig.132 b is assigned the value of a with an intra-assignment delay of 2 ns. The value of a is
sensed at zero ns and assigned to b after 2 ns. Until that time, b retains its old value. Again at
the 2nd ns, a is sensed and b is assigned the new value of a at the 4th ns, and so on. Partial
results of simulation are shown in Table 24. The following points are to be noted here:

. The value of a is sensed at time instants 2, 4, 6, etc.
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«  Values at other instants of time are not sensed.
- All assignments are carried out with a delay of 2 ns.

- Changes in a which do not last for 2 ns may be ignored.

Module deld;
Integer a, b;
Always b =#2 a;
Initial
begin
a=10; b=0; #2 a=l; #2 a=2; #2a=3;
#2 a=4; #2a=5;, #2 a=6; #2 a=], #2 a=8;
end
initial $monitor($time, " a="%d, b="%ad", a, b);
initial #20 $finish;
endmodule

Fig.132 A module to illustrate delayed assignment

t a b Remarks

0 0 0 There are two assignment statements to 8 at 2 ns intervals — namely
2 1 x the one in the always block and the other one in the initial block;

L 2 1 both are concurrent. The simulator decides the precedence. The

f 3 2 output here shows that the assignment in the always block has the
g 4 2 precedence.

Table 24 Simulation Results

7.2 Delay Assignments

In all the illustrations above, delay was specified as a number. It may be a variable or
a constant expression. In case it is an expression, it is evaluated and execution delayed by the
number of time steps. If the number evaluates to a negative quantity, the same is interpreted
as a 2's complement value. In the statement

always#b a = a+1;

a and b are variables. The execution incrementing a is scheduled at b ns. If b changes, the
execution time also changes accordingly. As another example consider the procedural
assignment

always#(b+c)a = a+1;

Here a, b, and c are variables. The algebraic addition of variables b and c is to be done.
The scheduler schedules the incrementing of 3 and reassigning the incremented values
back to 3 with a time delay of (b + c) ns. As an additional example consider the
assignment below with an intra-assignment delay.
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always # (a+b) a =#(b +c)a +1;

Here the simulator evaluates (a + b) during simulation. After a lapse of (a + b) ns, execution
of the statement is taken up; (a + 1) is evaluated and assigned as the new value of 3 - but the
assignment is delayed by (b + c) ns.

7.3 Zero Delay

A delay of 0 ns does not really cause any delay. However, it ensures that the
assignment following is executed last in the concerned time slot. Often it is used to avoid
indecision in the precedence of execution of assignments.

8.wait CONSTRUCT

The wait construct makes the simulator wait for the specified expression to be true
before proceeding with the following assignment or group of assignments. Its syntax has the
form

wait (alpha) assignmentl;

alpha can be a variable, the value on a net, or an expression involving them. If alpha is an
expression, it is evaluated; if true, assignmentl is carried out. One can also have a group of
assignments within a block in place of assignmentl. The activity is level-sensitive in
nature, in contrast to the edge-sensitive nature of event specified through @. Specifically the
procedural assignment

@ clka=b;

assigns the value of b to a when elk changes; if the value of b changes when elk is steady,
the value of a remains unaltered. In contrast, with

wait (clk) #2 a = b;

the simulator waits for the clock to be high and then assigns b to a with a delay of 2 ns. The
assignment will be refreshed as long as the elk remains high.

Example 20: A rudimentary serial transmitter module

Fig.133 shows a rudimentary and crude version of a serial receiver module and its test
bench. Simulation results are shown in Fig.134. The module receives serial data on the di
line. The data are synchronized to the clock clk. The sequence of operations carried out by
the module is as follows:

» Wait for recv input to go high.

» Once recv=l, latch the next 4 successive bits of incoming data into respective bit
positions of the do register.
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» Once the above nibble receipt is accomplished, set acknowledgment flag high.

» If recv continues to remain high, the subsequent serial bits will be loaded into the do
nibble, again and again in groups of 4 bits.

» Ifatany time recv goes low, the receipt and the serial to parallel conversion will come to
a stop.

module st rec{do, ack, clk, di, recv);

output [3:0] do; output ack;

input clk, recv, di;

reg [3:0] do; reg ack;

mitial ack = 1'b0);

always begin
wait(recv)
inegedge clk) do[0]=di;
@(negedge clk) do[ 1]=di;
@inegedge clk) do[2]=di;
inegedge clk) do[3]=di;
{@inegedge clk) ack = 1'bl;

end

endmodule

module tst sr rec;

reg clk, di, recv;

wire [3:0]do; wire ack;

mnitial  begin
clk=1b0; recv=1'b0; di=1'b0; #5 recv=1'bl;
end

always #2clk = ~clk;

mnitial ~ begin
#7di=1'b1; #4di=1'b0; #8di=1'b1; #&di=1'b0);
end

initial $Smonitor($time, "clk="%d, recv="ubh, di=2b, do="%b, ack=2ub",
clk, recv, di, do, ack);

st rec rrec(do, ack, clk, di, recv);

initial #25 $stop;
endmodule

Fig.133 A rudimentary serial transmitter module
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ffoutput

_1:_.

Oclk=0, recv=0, di=0, do=xxxx, ack=0
2elk=1, recv=0, di=0, do=xxxx, ack=0
4elk=0, recv=0, di=0, do=xxxx, ack=0
Sclk=0, recv=1, di=0, do=xxxx, ack=0
belk=1, recv=1, di=0, do=xxxx, ack=0
Telk=1, recv=1, di=1, do=xxxx, ack=0
gclk=0, recv=1, di=1, do=xxx1, ack=0
10clk=1, recv=1, di=1, do=xxx1, ack=0
11clk=1, recv=1, di=0, do=xxx1, ack=0
12¢lk=0, recv=1, di=0, do=xx01, ack=0
14clk=1, recv=1, di=0, do=xx01, ack=0
16clk=0, recv=1, di=0, do=x001, ack=0
18clk=1, recv=1, di=0, do=x001, ack=0
19¢lk=1, recv=1, di=1, do=x001, ack=0
20clk=0, recv=1, di=1, do=1001, ack=0
22clk=1, recv=1, di=1, do=1001, ack=0
24clk=0, recv=1, di=1, do=1001, ack=1

Fig.134 Simulation Results

9.MULTIPLE ALWAYSBLOCKS

All the activities within an always block are scheduled for sequential execution. The
activities can be of a combinational nature, a clocked sequential nature, or a combination of
these two. A design description involving such combinations is conventionally called the
'Register Transfer Level' description. Basically, any circuit block whose end-to-end operation
can be described as a continuous sequence can be described within an always block. A
typical circuit block conforming to the above description is shown in Fig.135. It has three
activities termed Al, A2, and A3. These three are to be done in that order. Activity Al
accepts x as input and it generates output B and p. p and y form inputs to activity A2.
Similarly activity A2 generates outputs ¢ and q after activity Al is completed. g and z form
outputs of A2. After activity A2 is completed, activity A3 is scheduled. It accepts z and g as
inputs and generates D as output. Here if Al, A2, and A3 are logical activities, the whole
block can be synthesized as a combinational logic unit. If one or more of these are clocked
events, execution may be sequential. The design examples considered so far are broadly of
this category.

_t 'l ly
_,,\l_i—%bfl?q_)nj—ﬂr

B C

Fig.135 Sequentially connected always blocks
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In a comparatively bigger IC, the activity flow can be more complex. One with an
additional level of complexity is shown in Fig.136. The activities are marked A1-A2-A3 and
B1-B2-B3, These are the two streams in the circuit. It is possible that the intermediate results
of one may affect the flow of the other. Functioning of two timers - dependent on each other
-is a typical example. A processor servicing serial reception and serial transmission
simultaneously is another example. In all these cases, each sequential activity is described in
a separate always block.

A design of the type in Fig.136 can be described with two always blocks. In some
others, three or more always blocks may be called for.

o

o+
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Fig.136 Sequentially connected always blocks for concurrent execution

Activities within one always block are normally sequential. If necessary, they can be
made selectively concurrent. But when designs are spread out in two or more always blocks,
they are necessarily concurrent. Thus the blocks P and Q in Fig.136 are concurrent while the
"sub-blocks™ within each (namely Al, A2, and A3 within block P and BIl, B2, and B3 within
block Q) are sequential. In short, with behavioral level descriptions, one can organize the
activities to be in concurrent form, in sequential form, or in combinations. In contrast, all
design descriptions involving constructs at gate and data flow levels are necessarily
concurrent.

10. DESIGNS AT BEHAVIORAL LEVEL

All simple algebraic as well as logical expressions can be described at the behavioral
level. One can also mix them with blocks at the gate level as well as the data flow level to
form composite as well as more involved modules.
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module acibeh{o,a,b);
output o;
input[1:0]a,b;
req o,al,bl,ol;
always@(a[l] or a[0]lor b[lleor bB[0])
begin
al=&a;
bl=&b;
ol=al||bkl;
o=~0l;
end
endmodule

module tst acibeh;
reg [1:0]a,b; /* specicific walues will be assigned to
al,aZ,bl, and b2 and these connected
to input ports of the gate insatntiations;
hence these variables are declared as reg */
wire o;
initial
begin
al0]1=1'b0;all] =1'b0;b[0]=1"b0;b[1] =1"bO;
#3 al[0] =1'bkl;

#3 al[l] =1'bl;
#3 b[0] =1"bl;
#3 b[1l] =1"b0;
#3 al0] =1'bl;
#3 a[l] =1'b0;
#3 b[0] =1"b0;

end

initial #100 $stop;//the simulation ends after running

for 100 tu's.

initial $monitor (Stime, "o =%b,a[0]1=%b,al[ll=%b, b[0] =
]

?S:D ,:D[l] = ?5:':' ",G,E[D],a[l],b[ﬁ r‘-"[l]j:
aoibeh gg(o,a,b);
endmodule

Fig.137 A-O-I1 gate at behavioral level modeling and its test bench

# 0 o=1,al[0]=0,a[1]=0,b[0]=0,b[1]=0
# 3 o=1,al[0]=1,a[1l]=0,b[0]=0,b[1]=0
#6 o=20,al[0]=1,a[l1l]=1,b[0]=0,b[1]=0
# 9 o= 20,al[0]=1,a[l]=1,b[0]=1,b[1]=0
#18 o = 1,a[0]=1,a[1l]=0,b[0]=1,b[1]=0
#21 o= 1,al0]=1,a[l1l]=0,b[0]=0,b[1]=0

Fig.138 Simulation Results
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Fig.139 Synthesized circuit

Alternative methods for A-O-I gate design:

module agcibehl {o,a,b) ;
cutput o;
input[1:0]a,b;

reg o;

always@(al[l]lora[Olor bB[lloxrk[0]) o=~ ((&a) || (&k));

endmodul e

Fig.140 Alternative 1

module aocibehZ(o,a,b);
cutput o;
input[l:0]a,b;

wire al,bl;

req o;

and gl{al,a[l],a([0]),92(kl,b[1],B[0]);

alwaysi (al or bl)
o=~(all| |bl);
endmodule

Fig.141 Alternative 2

module acibeh3 (o,a.b);

cutput o;

input[l:0]a,b;

wire al,bl;

reqg o;

assign al=&a,bl=:&b;
always@ (al or bl)o=~(al||bl);
endmodule

Fig.142 Alternative 3
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module aoibehd (o, a,b);
output o;
input[1:0]a,b;

wire al,bl;

reqg o;

assign al=&a;

and g2(kl,b[1],b[0]);
always@(al or bl)

o=~ ({al||bl);

endmodul e

Fig.143 Alternative 4

11. BLOCKING AND NONBLOCKING ASSIGNMENTS

All assignment within an initial or an always block considered so far are done through
an equality ("=") operator. These are executed sequentially - that is, one statement is
executed, and only then the following one is executed. Such assignments block the execution
of the following lot of assignments at any time step. Hence they are called "blocking
assignments”. Further, when such a blocking assignment has time delays associated with it,
the delay is applicable to the following assignment or activity also.

One comes across situations where assignments are to be effected concurrently. A
facility called the "nonblocking assignment™ is available for such situations. The symbol
"<=" signifies a non-blocking assignment. The same symbol signifies the "less than or equal
to" operator in the context of an operation. The context decides the role of the symbol. The
main characteristic of a non- blocking assignment is that its execution is concurrent with that
of the following assignment or activity.

Consider the set of nonblocking assignments in Fig.144. All three assignments are
executed concurrently - that is, A, B, and C are assigned the values 00 01 and 11
concurrently and not sequentially. Fig.145 shows the same non-blocking assignments with
time delays. All three assignments are taken up for execution concurrently.

A <= 2'b00; A <=2'b00;
B <=2'h01; #2 B<=2'h01;
C<=2'hll; #1 C<=2'bhll;
Fig. 144 Non Blocking Assignments Fig. 145 Non Blocking Assignments with delays

Nonblocking assignments are essentially two-step affairs. For all the non-blocking
assignments in a block, the right-hand sides are evaluated first. Subsequently the specified
assignments are scheduled. Consider the block of assignments in Fig.146. First A is assigned
the binary value 00, and then B is assigned the value 01. These two assignments are
sequential. The subsequent two assignments are concurrent.

Il B.Tech—1 SEM 148 DDTV




The assignment A <= b "reads" the value of B, stores it separately, and then assigns it
to A. The new value of a is 01. The assignment takes the value of A- i.e., 00 - stores it
separately and assigns it to B. Thus the new value of B is 00. After the block is executed, A
has the value 01 while B has the value 00. Contrast this with the set of blocking assignments

in Fig.147. All four assignments here are sequential in nature. The third one, namely

A=B;

assigns the value 01 to a; subsequently the fourth and following assignment

B=A;

assigns the present value of A (i.e., 01) to b; the value of b remains at 01 itself.

A = 2b00;
B = 2b01;
A <= B;
B<=A

A =2'b00;
B =2'p01;
A=B;
B=A;

Fig.146 Non Blocking Assignments

Fig. 145 Blocking Assignments

@(negedge clk) C == B &(-c);

initial
begin
A= 1'b0;
B= 1'b1;
C = 1'p0;
end
always (wiposedge clk)
begin
A <= B;
#2 B=<=C;
end

Fig.148 Module with blocking and non blocking assignments

Consider the block of Fig.148. It has three nonblocking assignments. The sequence of
execution of the three assignments is as follows:

e At the positive edge of the clock, values of A, B, and C are read and stored and B &(~C)

are computed.

- Alis assigned the stored value of B (=1); this and the activity in (1) above are carried out

concurrently in the same time step.

- At the next negative elk edge, C is assigned the value of B & (~C) evaluated and stored

earlier (=1) — mentioned in (1) above.
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- Two nanoseconds after the positive edge of elk (i.e., after the entiy to the block), B is
assigned the value of C stored earlier (=0).

In the segment in Fig.149, two always blocks do assignments concurrently; both of
these are of the blocking variety. The values assigned to A and B are decided by the structure
of the simulator. The block has the potential to create a race condition. In contrast, in the
segment of Fig.150, the two assignments are of the nonblocking type; A is assigned the
previous value of B, while B is assigned the previous value of A. The race condition is
avoided here.

always (i (posedge clk) always ((posedge clk)
A=B; A =<=B;
always (i(posedge clk) always (i(posedge clk)
B=A; B <=A;
Fig.149 A set of assignments with potential Fig.150 A set of assignments to avoid
race condition race condition

Although blocking and nonblocking assignment can be mixed in a block, many
synthesis tools may not support such combinations.

11.1. Nonblocking Assignments and Delays

Delays - of the assignment type and the intra-assignment type - can be associated with
nonblocking assignments also. The principle of their operation is similar to that with
blocking assignments. The delay values can be constant expressions. Blocking and
nonblocking assignments, together with assignment and intra-assignment delays, open up a
variety of possibilities. They can be used individually and in combinations to suit different
situations.

12. THE case STATEMENT

The case statement is an elegant and simple construct for multiple branching in a
module. The keywords case, endcase, and default are associated with the case construct.
Format of the case construct is shown in Fig.151. First expression is evaluated. If the
evaluated value matches refl, statementl is executed; and the simulator exits the block; else
expression is compared with ref2 and in case of a match, Statement2 is executed, and so on.
If none of the refl, ref2, t'/c., matches the value of expression, the default statement is
executed.
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Observations:

Case (expression)
Ref1 : statement1;
Ref? : statement2;
Ref3 : statement3;

defaul t: statementd;
endcase

Fig. 151 Syntax of case statement

e A statement or a group of statements is executed if and only if there is an exact - bit

by bit - match between the evaluated expression and the specified refl, ref2, etc.

e For any of the matches, one can have a block of statements defined for execution. The
block should appear within the begin-end construct.

e There can be only one default statement or default block. It can appear anywhere in

the case statement.

e One can have multiple signal combination values specified for the same statement for
execution. Commas separate all of them.

Example 20: 4x1 MUX

module mux4_1(a,s,y);

input [3:0] a;
input [1:0] s;
output y;
regy;
always @ (s)
begin

case (s)

2'b00: y = a[0];
2'b01: y = a[1];
2'b10: y = a[2];
2'b11:y =a[3];

default: y = 1'bz;

endcase
end
endmodule

module mux4_1_test;

reg [3:0] a;
reg [1:0] s;
wire y;
mux4_1(a,s,y);
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initial

begin
a =4'b0000;
s =2'b00;
end
always
begin
#2 a=4'b1101;
#2 s=2'h01;
#2 s =2'b10;
#2 s=2'b11;
end

initial $monitor ($time, ""a=%b, s=%b, y=%b" a,s,y);
initial #10 $stop;
endmodule

Simulation Results:

0 a=0000, s=00, y=0
2 a=0010, s=00, y=0
4 a=0010, s=01, y=1
6 a=0010, s=10, y=0
8 a=0010, s=11, y=0

Example 21: ALU

module alu (a,b,m,ci,y,co);
input [3:0] a,b;
input [1:0] m;
input ci;
output [3:0] y;
output co;
reg [3:0]y;
reg co;
always @ (m)
begin
case (m)
2°b00: {co,y} = (a+b+ci);
2’b01:y =~a;
2’b10: y = a&b;
2’bl1l:y =a”b;;
default: begin
$display (““No Operation”);
y =4’bzzzz;
end
endcase
end
endmodule
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module alu_test;

reg [3:0] a,b;

reg [1:0] m;

reg ci;

wire [3:0] y;

wire co;

alu (a,b,m,ci,y,co);

initial

begin
a=4’b1011;
b =4'b1101;
ci =1’b0;
m = 2’b00;

end

always

begin
#2 m=2
#2 m=2
#2 m=2

end

initial $monitor ($time, “a=%b, b=%b, ci=%b, m=%b, co=%b, y=%b”,

a,b,ci,m,co,y);
initial #11 $stop;
endmodule

Simulation Results:

0 a=1011, b=1101,
2 a=1011, b=1101,
4 a=1011, b=1101,
6 a=1011, b=1101,

No Operation

8 a=1011, b=1101,

No Operation

10 a=1011, b=1101,

12.1. Casex and Casez

y=1000
y=0100
y=1001
y=0110

y=27277

y=2777

The case statement executes a multiway branching where every bit of the case
expression contributes to the branching decision. The statement has two variants where some
of the bits of the case expression can be selectively treated as don't cares - that is, ignored.
Casez allows z to be treated as a don't care. "?" character also can be used in place of z.
casex treats x or z as a don't care.
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13.SIMULATION FLOW

Different constructs for design description and simulation have been dealt with so far.
These can be at different levels of abstraction - gate, data flow, or behavioral level. The
constructs to be discussed in the following chapters add to the variety and flexibility. Such
elements in different combinations make up the design and simulation modules in Verilog.
Further, as an HDL, Verilog has to be an inherently parallel processing language. The fact
that all the elements of a digital circuit function and interact continuously conforming to their
interconnections demands parallel processing.

e Simulation is carried out in simulation time. The simulator functions with simulation
time advancing in (equal) discrete steps.

» At every simulation step a number of active events are sequentially carried out.

* The simulator maintains an event queue - called the "Stratified Event Queue" - with an
active segment at its top. The top most event in the active segment of the queue is taken
up for execution next.

» The active event can be of an update type or evaluation type.
The evaluation event can be for evaluation of variables, values on nets, expressions, etc.
Refreshing the queue and rearranging it constitutes the update event.

* Any updating can call for a subsequent evaluation and vice versa.

* Only after all the active events in a time step are executed, the simulation advances to the
next time step.

Completion of the sequence of operations above at any time step signifies the parallel
nature of the HDL.

A number of active events can be present for execution at any simulation time step; all
may vie for "attention". Amongst these, an event specified at #0 time is scheduled for
execution at the end - that is, before simulation advances to the next time step. The order, in
which the other events are executed, is essentially simulator-dependent.

13.1. Stratified Event Queue

The events being carried out at any instant give rise to other events - inherent in the
execution process.

All such events can be grouped into the following 5 types:
» Active events

* Inactive events - The inactive events are the events lined up for execution immediately
after the execution of the active events. Events specified with zero delay are all inactive
events.

* Blocking Assignment Events - Operations and processes carried out at previous time
steps with results to be updated at the current time step are of this category.

* Monitor Events - The Monitor events at the current time step - $monitor and $strobe -
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are to be processed after the processing of the active events, inactive events, and
nonblocking assignment events.

Future events - Events scheduled to occur at some future simulation time are the future

gvents.
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14. if AND if-else CONSTRUCTS

assignmentl;
If (condition) assignment2;
assignment3;
assignment4;

The if construct checks a specific condition and decides execution based on the
result.. After execution of assignmentl, the condition specified is checked. If it is satisfied,
assignment2 is executed; if not, it is skipped. In either case the execution continues through
assignment3, assignments etc. Execution of assignment2 alone is dependent on the condition.
The rest of the sequence remains.

The flowchart equivalent of the execution is shown in Fig.153. If the number of
assignments associated with the if condition is more than 1, the whole set of them can be
grouped within a begin-end block.

v

assignmentl

assignment2

\ 4 A J

A
assignment3

A
assignmentd

v

Fig.153 Flow chart of if statement

The if- else construct is more common and turns out to be more useful than the if
construct taken alone. Fig.154 shows the same in flowchart form. The design description has
two branches; the alternative taken is decided by the condition.

» After the execution of assignmentl, if the condition is satisfied, alternativel is followed
and assignment2 and assignments are executed. Assignment4 and assignment 5 are
skipped and execution proceeds with assignment6.
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» If the condition is not satisfied, assignment2 and assignments are skipped and
assignment4 and assignments are executed. Then execution continues with

assignment6.

assignmentl;

If (condition)

begin
assighment2;
assignment3;

end
else
begin
assignment4;
assignment5;
end

!

assignment]
yes no
condition

Y
assignment2 assignmentd

v l
assignment3 assignment>

Y Yy

Y

assignment

'

Fig. 154 Flow chart of if-else statement
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Example 22: 1X4 Demultiplexer

module demuxl1_4 (a,y,s);

input a;
input [1:0] s;
output [3:0] y;
reg [3:0]y;
always@ (a or s)
begin
if(s=2’b00)
begin
y[0] = &;
y[3:1] = 3’bzzz;
end
else if (s=2’b01)
begin
y[i]=a;
{y[31,y[2],y[0]} = 3’bzzz;
end
else if (s=2’b10)
begin
y[2] = &;

{Y[3].y[1].y[O]} = 3’bzzz;
else (s=2’b11)

begin
y[3] = a;
y[2:0] = 3’bzzz;
end
end
endmodule

/I Test Bench
module demux1_4 _test;
reg a;
reg [1:0] s;
wire [3:0] y;
initial
begin
a=1’b1; s=2’b00; y=4"b0000;
end
always
begin
#2 s=2"pb01;
#2 s=2"b10;
#2 s=2"b11;
end
demuxl_4 M1 (a,y,s);
initial $monitor ($time, “s = %b, a = %b, y = %b”, s,a,y);
initial #10 $stop;
endmodule

Il B.Tech—1 SEM 158

DDTV




15. assign-deassign CONSTRUCT

A behavior block is activated by the event at the beginning. A proper operation
demands that all variables with assignments within the block are to be included in the
sensitivity list.

The assign — deassign constructs allow continuous assignments within a behavioral
block. By way of illustration, consider the following simple block:

always@ (posedge clk) a = b;

By way of execution, at the positive edge of elk the value of b is assigned to variable a, and a
remains frozen at that value until the next positive edge of elk. Changes in b in the interval
are ignored.

As an alternative, consider the block
always@ (posedge clk) assign C =d;

Here at the positive edge of elk, C is assigned the value of d in a continuous manner;
subsequent changes in d are directly reflected as changes in variable C: The assignment here
is akin to a direct (one way) electrical connection to C from d established at the positive edge
of clk.

Again consider an enhanced version of the above block as
always
begin
@(posedge clk) assign C = d;
@(negedge clk) deassign C;
end
The above block signifies two activities:
(i) Atthe positive edge of clk, C is assigned the value of d in a continuous manner.

(i) At the following negative edge of clk, the continuous assignment to C is removed,;
subsequent changes to d are not passed on to C; it is as though C is electrically
disconnected from d.

The above sequence of twin activities is repeated cyclically. In short, assign allows a
variable or a net change in the sensitivity list to mandate a subsequent continuous assignment
within, deassign terminates the assignment done through the assign-based statement. The
assignment to C in the above two cases is referred to as a "Procedural Continuous
Assignment”.
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Example 23: D Latch

module dlatch (d,clr,pr,q,en);

input d,clr,pr.en;

output g;

reg g;

always @ (clr or pr orenord)

begin
if (clr) assign g = 1°b0;
else if (pr) assign q =1’b1;
else if (en) assign q = d;
else deassign q;

end

endmodule

16. repeat CONSTRUCT

The repeat construct is used to repeat a specified block a specified number of times.
The typical format is

repeat (a)

begin
assignmentl;
asignement2;

The quantity a can be a number or an expression evaluated to a number. As soon as
the repeat statement is encountered, a is evaluated. The following block is executed
"a" times. If "a" evaluates to 0 or x or z, the block is not executed.

Example 24: Design of a Memory

module memory ();
reg [7:0] mem [9:0];

integer i;
reg clk;
always
begin
repeat (10)
begin
@negedge clk
mem[i] = i*4;
i=i+1;
end
repeat (10)
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begin
@negedge clk
i=i-1;
$display (“t = %0d, mem[%0d] = %0d”, $time, i, mem[i]);
end
initial
begin
clk =1’b0;
i=0;
#42 $stop;
end
always #2 clk = ~clk;
endmodule

17.for LOOP

The for loop in Verilog is quite similar to the for loop in C. The typical format is

for (assignmentl; expression; assignment2)
loop statements;

!

| assignment |

il

Y

1o
Sxpression

execute block

Y
assignment2

"

Fig. 155 Flow chart of for loop
It has four parts; the sequence of execution is as follows:
» Execute assignment1.
» Evaluate expression.
» If the expression evaluates to the true state (1), carry out statement. Go to step 5.
» If expression evaluates to the false state (0), exit the loop.

» Execute assignment2. Go to step 2.

Il B.Tech—1 SEM 161

DDTV




Operation of the loop is shown in Fig.155 in flowchart form. In general, whenever
one has to accommodate alternatives for execution, the if and if-else constructs are preferred.
Whenever a sequence of assignments is to be done repeatedly with an index for termination,
the for construct is preferred.

Example 25: Design of a Memory

module memory ();
reg [7:0] mem [9:0];

integer i;
reg clk;
always
begin
for (i=0; i<10;i=i+1)
begin
@negedge clk
mem[i] = i*4;
end
for (i=0; i<10;i=i+1)
begin
@negedge clk
$display (“t = %0d, mem[%0d] = %0d”, $time, i, mem[i]);
end
initial
begin
clk =1’b0;
#42 $stop;
end
always #2 clk = ~clk;
endmodule
18. THE disable CONSTRUCT

There can be situations where one has to break out of a block or loop. The disable
statement terminates a named block or task. Control is transferred to the statement
immediately following the block. Conditional termination of a loop, interrupt servicing, etc.,
are typical contexts for its use. Often the disabling is carried out from within the block itself.
The disable construct is functionally similar to the break in C.

Observations:

» The disable statement has to have a block (or task) identifier tagged to it - in this respect
it differs from "break™ in C.

» Once encountered, it terminates execution of the block; the following statements within
the block are not executed.

> Typically it can be used to handle exceptions to regularly assigned activities for example,
Interrupt, Hold, Reset, etc.
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19. while LOOP
The typical format for while loop is
while (expression) statement;

The Boolean expression is evaluated. If it is true, the statement (or block of
statements) is executed and expression evaluated and checked. If the expression evaluates to
false, the loop is terminated and the following statement is taken for execution. If the
expression evaluates to true, execution of statement (block of statements) is repeated. Thus
the loop is terminated and broken only if the expression evaluates to false. The flowchart for
the while loop is shown in Fig.156.

assi gnment

¢

false true

‘ execute block

b

Fig.156 Flow chart of while loop
Observations:

» Whenever the while construct is used, event or time-based activity flow within the block
has to be ensured.

» With the while construct the expression associated with the keyword while must become
false through the execution of assignments inside the block. Otherwise we end up with an
endless looping within the block, causing a deadlock.

» There may be situations where we have to wait in a loop while an event external to it
changes to trigger an activity. The wait construct is to be used for such situations and not
while. With the wait construct the activity is scheduled and execution continued with the
other activities. With the while construct until the associated loop is not complete, other
activities are not taken up.

Example 26: Design of a Memory

module memory ();
reg [7:0] mem [9:0];
integer i;

reg clk;

always

begin
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while (i<10)
begin
@negedge clk
mem[i] = i*4;
i=i+1;
end
while (i<10)
begin
@negedge clk
i=i-1;
$display (“t = %0d, mem[%0d] = %0d”, $time, i, mem[i]);
end
initial
begin
clk =1’b0;
i=0;
#42 $stop;
end
always #2 clk = ~clk;
endmodule

20. forever LOOP

Repeated execution of a block in an endless manner is best done with the forever
loop (compare with repeat where the repetition is for a fixed number of times).

Example 27: Design of a Memory

module memory ();

reg [7:0] mem [9:0];

integer i;

reg clk;

always

begin: mem_write
forever@negedge clk

begin
if (i>=10) disable mem_write;
mem[i] = i*4;
i=i+1;
end
end
always

begin: mem_read
forever@negedge clk
begin
if (i>=20) disable mem_read;
$display (“t = %0d, mem[%0d] = %0d”, $time, i, mem[i]);
i=i+1;
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end

end
initial
begin
clk =1’b0;
i=0;
#42 $stop;
end
forever #2 clk = ~clk;
endmodule

21. PARALLEL BLOCKS

All the procedural assignments within a begin-end block are executed sequentially.
The fork-join block is an alternate one where all the assignments are carried out
concurrently (The nonblocking assignments too can be used for the purpose.). One can use a
fork-join block within a begin-end block or vice versa.

module fk jn a;

integer a;
initial
begin

a=0);
il a=1;
#2 a=2;
#3 a=3;
#4 Sstop;
end

initial $monitor ("a=%0d,
t="%0d",a,5time);
endmodule

HSimulatiom results
# a=0, =0
i#a=1, =1
#a=2 =3
# a=3, =6

module fk jn b;

integer a;
initial
fork

a=0);
i1 a=1;
#2 a=2;
#3 a=3;
#4 Sstop;
join

initial $monitor ("a=%0d,

t=20d" ,a,$time);
endmodule

JfSimulation results
#a=0, =0
#a=1, =1
#a=2, =2
# a=3, =3

(a)

Fig. 157 (a) begin-end block and simulation results
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module fk jn c;

. module fk jn d;
integer a; : .
e integer a;
nitial nitial
s initia
45 a=5; fork
' #5 a=5;
i:tzrk 20 begin
:]} .d_lf #1 a=0;
. 4= #2 a=1;
#3 a=2: " o
. . #3 a=2;
4 a=3; 44 =3
.T'ET bstop; #5 Sstop;
join end
end join
R r : [T T 0 [ . J
initial $monitor ("a=%0d, t=260d" ,a,5time); initial $monitor ("a=%0d, t="%0d" a, $time);
endmodule
endmodule
SSimulation results SSimulation results
# a=x, t=0 # a=x, =0
# a=3, t=5 # a=0, =1
#a=0, t=6 #a=1, =3
#a=1, t=7 #a=5, =5
#a=2 t=8 #a=2 t=6
#a=3, t=9 #a=3, =10
(@ (b)
Fig.158 (a) fork-join block within begin-end block (b) begin-end block within fork-join block

22. Force-release CONSTRUCT

When debugging a design with a number of instantiations, one may be stuck with an
unexpected behavior in a localized area. Tracing the paths of individual signals and
debugging the design may prove to be too tedious or difficult. In such cases suspect blocks
may be isolated, tested, and debugged and status quo ante established. The force-release
construct is for such a localized isolation for a limited period. Figure 8.53 shows the use of a
force-release construct in a test bench. The assignment

forcea=1'b0;
forces the variable a to take the value 0.
force b = c&d;

forces the variable b to the value obtained by evaluating the expression c&d. Subseguently a
few assignments are made in the test bench. At a later part of the test bench, a and b are
released that is, their original assignments are restored. The assignments here have specific
characteristics:

forcea=1'b0O;
force b = c&d;

assignmentl;
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assignment2;
release a;

release b;

supplyl 4‘%;
s

» gl —® release

X

a4 » o force >
b —> N }
- CuT —» =

- ¥l il
o2 |—erelease >

#___grelease
= —arelease

& supplvl

Fig.159 An example circuit to illustrate force-release construct

Observations:

e The force-release construct is similar to the assign-deassign construct. The latter construct
is for conditional assignment in a design description. The force-release construct is for
"short time" assignments in a test-bench. Synthesis tools will not support the force-
release constructs.

o The force-release construct is equally valid for net-type variables and reg-type variables.
The net-type variables revert to their normal values on release. With reg-type variables
the value forced remains until another assignment to the reg.

e The variable, on which the values are forced during testing, must be properly
dereferenced.

¢ In the illustration above, each variable was forced one at a time. It was done only to
simplify the illustration sequence and focus attention on the possible use of the construct.
In practice, different variables can be forced together before the special debug sequence.
Their release too can be together.
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23. EVENT

The keyword event allows an abstract event to be declared. The event is not a data
type with any specific values; it is not a variable (reg) or a net. It signifies a change that can
be used as a trigger to communicate between modules or to synchronize events in different
modules. One typical example for event is

change has been declared as an event. In the course of execution of an always block,
the event is triggered. The operator signifies the triggering. Subsequently, another activity
can be started in the module by the event change. The always@(change) block activates this.
The event change can be used in other modules also by proper dereferencing; with such
usage an activity in a module can be synchronized to an event in another module.

The event construct is quite useful, especially in the early stages of a design. It can be
used to establish the functionality of a design at the behavioral level; it allows
communication amongst different instantiated modules without associated inputs or outputs.

module rec tst;

reg clk,di; integer n,i;

reg| 8:1] aajwire [8:1] a;

always #2 clk = ~clk;

rec rree(a,diclk);

always (@ (rree.buf ful) $display("t=%0d, aa=%h, a=%h" $time,aa,a);

initial
for (n=1;n<3000;n=n+113) begin
aa=n;i=0;
repeat( 8 J@( posedge clk)
begin
i=i+1;
di=aa[i];
{Bwrite("bb=%b" ,aali]);
end
#3 i=0;

end /Why '#3'7
initial clk=1'b0; mnitial #4400 $stop;
endmodule

Fig. 160 A module to illustrate event construct
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UNIT-1V

SWITCH LEVEL MODELLING
SYSTEM TASKS, FUNCTIONS, AND
COMPILER DIRECTIVES
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UNIT -1V
SWITCH LEVEL MODELLING

In today's environment the MOS transistor is the basic element around which a VLSI
is built. Designers familiar with logic gates and their configurations at the circuit level may
choose to do their designs using MOS transistors. Verilog has the provision to do the design
description at the switch level using such MOS transistors. Switch level modeling forms the
basic level of modeling digital circuits. The switches are available as primitives in Verilog;
they are central to design description at this level. Basic gates can be defined in terms of such
switches. By repeated and successive instantiation of such switches, more involved circuits
can be modeled.

Designers familiar with logic gates, digital functional blocks, and their interplay can
successfully carry out a complete VLSI design without any involvement at the switch level.

1. BASIC TRANSISTOR SWITCHES

Consider an NMOS transistor of the depletion type. When used in a digital circuit, it
can be in one of three modes:

» Vs < Vs where Vg and Vs are the gate and source voltages with respect to the drain:
The transistor is OFF and offers very high impedance across the source and the drain. It is
in the z state.

» Vg = Vs: The transistor is in the active region. It presents a resistance between the source
and the drain. The value depends on the technology. Such a resistive state of the transistor
can be modeled in Verilog. A transistor in this mode can be represented as a resistance in
Verilog - as pulll or pull0 depending on whether the drain is connected to supplyl or
source is connected to supplyO.

» V> Vs: The transistor is fully turned on. It presents very low resistance (~0 Q) between
the source and drain.

An enhanced-mode NMOS transistor also has the above three modes of operation.
Similar modes are possible for the PMOS transistor also.

1.1. Basic Switch Primitives

Different switch primitives are available in Verilog. Consider an nmos switch. A
typical instantiation has the form

nmos (out, in, control);

nmos - a keyword - represents an NMOS transistor functioning as a switch. The
switch has three terminals - in, out and control. When the control input is at 1 (high) state, the
switch is on. It connects the input lead to the output side and offers zero impedance. When
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the control input is low, the switch is OFF and output is left floating (z state). If the control is
in the z or the x state, output may take corresponding values.

in out in out
control control
Fig. 161 (a) nmos switch (b) pmos switch

The keyword pmos represents a PMOS transistor functioning as a switch. The PMOS
switch has three terminals. A typical instantiation of the switch has the form

pmos (out, in, control);

When the control is at 1 (high) state, the switch is off. Output is left floating. When
control is at O (low) state, the switch is on, input is connected to output, and output is at the
same state as input. For other input values, output is at other values.

When instantiating an nmos or a pmos switch, a name can be assigned to the switch.
But the name is not essential. The nmos and pmos switches function as unidirectional
switches.

1.2. Resistive Switches

nmos and pmos represent switches of low impedance in the on-state, rnmos and
rpmos represent the resistive counterparts of these respectively. Typical instantiations have
the form

rnmos (output, input, control);
rpmos (output, input, control);

With rnmos if the control 1 input is at 1 (high) state, the switch is ON and functions
as a definite resistance. It connects input to output through a resistance. When control 1 is at
the O (low) state, the switch is OFF and leaves output floating.

The rpmos switch is ON when control is at 0 (low) state. It inserts a definite resistance
between the input and the output signals but retains the signal value.

Because rpmos and rnmos are resistive switches, they reduce the signal strength when
in the on state. The reduced strength is mostly one level below the original strength. The only
exceptions are small and hi-z. For these the strength and the state remain unaltered. The
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rpmos and rnmos switches function as unidirectional switches; the signal flow is from the
input to the output side.

Input strength Output strength
Supply —drive Pull — dave

Strong — drive Pull —dnve

Pull — drive Weak — drive

Weak — drive Medium — capacitive
Large — capacitive Medium — capacitive
Medium — capacitive Small — capacitive
Small — capacitive Small — capacitive
High impedance High impedance

Table 25 Input and Output strengths for Resistive Switches

13.pullup and pulldown

A MOS transistor functions as a resistive element when in the active state. Realization
of resistance in this form takes less silicon area in the IC as compared to a resistance realized
directly, pullup and pulldown represent such resistive elements. A typical instantiation here
has the form

pullup (X);
Here the net X is pulled up to the supplyl through a resistance. Similarly, the instantiation
pulldown (y);

pulls y down to the supplyO level through a resistance. The pullup and pulldown primitives
can be used as loads for switches or to connect the unused input ports to Vcc or GND,
respectively. They can also form loads of switches in logic circuits.

The default strengths for pullup and pulldown are pulll and pullO respectively. One
can also specify strength values for the respective nets. For example,

pullup (strongl) (X);

specifies a resistive pullup of net X to supplyl. One can also assign names to the pullup and
pulldown primitives. Thus

pullup (strongl) rs (X)
represents an instantiation of pullup designated rs having strength strong1l.

Difference between tri and pullup or pulldown is to be understood clearly, pullup is
a functional element; it represents a resistive connection to supplyl. In contrast tril is a type
of net; in the absence of an assignment, it remains connected to supplyl. A similar difference
exists between pulldown and tri0.
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Example 28: CMOS Inverter

L
01 Qp
in #——— I—C out

4‘ Qn
Supply( (a)

Fig.162 CMOS Inverter

Supplyl (b)

A CMOS inverter is formed by connecting an nmos and a pmos switch in series
across the supply. The output terminals are joined together to form the common output.
Similarly, the input is used as the common control input to both the switches.

module cmosinv (out,in);
input in;
output out;
supplyO a;
supplyl b;
nmos(out,a,in);
pmos(out,b,in);

endmodule

Example 29: CMOS NOR gate
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supplyl (=)

Supply0 (z)

NOR

(=1
o O O -|w-

Fig.163 CMOS NOR Gate

module cmosnor (y,a,b);
input a,b;
output y;
wire c;
supply0 z;
supplyl x;
pmos(c,x,a);
pmos(y,c,b);
nmos(y,z,a);
nmos(y,z,b);

endmodule

Example 30: CMOS NAND Gate

Supplyl (z)

[ = — ]

Fig.164 CMOS NAND Gate
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2. CMOS SWITCH

A CMOS switch is formed by connecting a PMOS and an NMOS switch in parallel -
the input leads are connected together on the one side and the output leads are connected
together on the other side. Fig.165 shows the switch so formed. It has two control inputs:

N_Control turns ON the NMOS transistor and keeps it ON when it is in the 1 state.
P_Control turns ON the PMOS transistor and keeps it ON when it is in the O state.

The CMOS switch is instantiated as shown below.

cmos csw (out, in, Ncontrol, P_control);

Significance of the different terms is as follows:

cmos : The keyword for the switch instantiation

CSW: Name assigned to the switch in the instantiation

out: Name assigned to the output variable in the instantiation

in: Name assigned to the input variable in the instantiation

N_Control: Name assigned to the control variable of the NMOS transistor in the instantiation

P_Control: Name assigned to the control variable of the PMOS transistor in the instantiation

Switch - 1:

! P control
in ._I I—Q out
| N control

Fig. 165 CMOS Switch

module cmos(out,in,nctr,pctr);
input in,nctr,pctr;

output out;

nmos gn(out,in,nctr);
pmos(out,in,pctr);

endmodule
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Switch - 2:

ﬂj control

in n—I: :I—- out
IN control

Fig. 166 CMOS Switch

module cmos(out,in,con);
input in,con;

output out;

wire pctr;

not gn(pctr,con)

nmos gn(out,in,nctr);
cmos gc(out,in,con,pctr);
endmodule

Example 31: ARAM Cell

Fig.167 shows a basic ram cell with facilities for writing data, storing data, and
reading data. When switch sw2 is on, gb - the output of inverter g1 - forms the input to the
inverter g2 and vice versa. The g1-g2 combination functions as a latch and freezes the last
state entry before SW2 turns on.

The step-by-step function of the cell is as follows:

*  When WSb (write/store) is high, switch SW1 is ON, and switch SW2 OFF. With Sw1 on,
input Din is connected to the input of gate g1 and remains so connected.

*  When WSb goes low, din is isolated, since SW1 is OFF. But SW2 is ON and the data
remains latched in the latch formed by g1-g2. In other words the data Din is stored in
the RAM cell formed by g1-g2.

* When RD (Read) goes active (=1), the latched state is available as output Do. Reading is
normally done when the latch is in the stored state.
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swr —ebo
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Fig. 167 A Dynamic RAM Cell

module ram1(do,din,wr,rd);
output do; input din,wr,rd;

wire gb,q;

tri do;

scw sww(q,din,wr), swr(do,q,rd);
not (pulll,pull0) n1(gb,q), n2(q,qb);
endmodule

module scw(out,in,n_ctr);
output out; input in,n_ctr;
wire p_ctr;

assign p_ctr = ~n_ctr;

cmos sw(out,in,n_ctr,p_ctr);
endmodule

3. BI-DIRECTIONAL GATES

The gates discussed so far (nmos, pmos, rnmos, rpmos, rcmos) are all unidirectional
gates. When turned ON, the gate establishes a connection and makes the signal at the input
side available at the output side. Verilog has a set of primitives for bi-directional switches as
well. They connect the nets on either side when ON and isolate them when OFF. The signal
flow can be in either direction. None of the continuous-type assignments at higher levels
dealt with so far has a functionality equivalent to the bi-directional gates. There are six types
of bidirectional gates.

3.1 tran and rtran

The tran gate is a bi-directional gate of two ports. When instantiated, it connects the
two ports directly. Thus the instantiation
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tran (sl, s2);

connects the signal lines s1 and s2. Either line can be input, inout or output, rtran is the
resistive counterpart of tran.

3.2 tranifl and rtranifl

tranifl is a bi-directional switch turned ON/OFF through a control line. It is in the ON-
state when the control signal is at 1 (high) state. When the control line is at state O (low), the
switch is in the OFF state. A typical instantiation has the form

tranifl (s1, s2, c);

Here C is the control line. If c=I, s1 and s2 are connected and signal transmission can be in
either direction, rtranifl is the resistive counterpart of tranifl. It is instantiated in an
identical manner.

3.3 tranifO and rtranif0

tranif0 and rtranif0O are again bi-directional switches. The switch is OFF if the control line is
in the 1 (high) state, and it is ON when the control line is in the 0 (low) state. A typical
instantiation has the form

tranif0 (s1, s2, C);

With the above instantiation, if C = 0, Si and S2 are connected and signal transmission can be
in either direction. If C = 1, the switch is OFF and Si and S2 are isolated from each other.
rtranif0 is the resistive counterpart of tranif0.
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Observations:

Any instantiation of a bi-directional switch of the above types can be given a name. But a
name is not essential. It is true of the other switches also.

With the bi-directional switches the signal on either side can be of input, output, or
inout type. They can be nets or appearing as ports in the module. But the type
declaration on the two sides has to be consistent.

The connections to the bi-directional terminals of each of the bi-directional switches have
to be scalars or individual bits of vectors and not vector themselves.

In the above instantiation s1 can be an input port in a module. In that case, s2 has to be a
net forming an input to another instantiated module or circuit block. s2 can be of output
or inout type also. But it cannot be another input port.

» sl and s2 - both cannot be output ports.

* sl and s2 - both can be inout ports.

With tran, tranifl, and tranifO bi-directional switches if the input signal has strength
supplyl (supply0), the output side signal has strength strongl (strong0). For all other
strength values of the input signal, the strength value of the output side signal retains the
strength of the input side signal.

With rtran, rtranifl and rtranif switches the output side signal strength is less than that
of the input side signal. The strength reduction is on the lines shown in Table 26 for
rnmos, rpmos, and rcmos switches.

Type of Typical Condition to be | Remarks
Bi-directional | instantiation ON
switch
tran(a, b);, | Always ON(if | Acts essentially as a buffer
instantiated)
2 port rtran(a, b); | —-do- Acts essentially as a buffer with
reduction in the strength of the signal
tranifl(a, | ONifc=1 Acts as a buffer if ON. Otherwise
b. ¢): provides 1solation
tranifO(a, | ONifc=0 —do -
b, c);
3 port rtranifl ONife=1 Acts as a buffer if ON. Otherwise
(a, b, c; provides isolation; signal strength on
the output side 18 lower than that on
the input side
rtranif0 ONife=0 —do -
(a, b, c)
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Table 26 Bidirectional Gates

ac DT b
SWia e ')/ ra swh
ar a SWC b br

Fig. 168 Bus switching using Bidirectional Gates

Example 32: RAM Cell

Fig.169 shows a single RAM cell. It can be instantiated in vector form to form a full-
fledged ram. a_d is the decoded address line. When active, it turns on the bi-directional
switch g3 and establishes a two-way connection between net ddd and net g. g1 and g2
together form a latch in feedback fashion. When g3 is OFF, the latch stores the state it was
last in. It is connected to ddd through g3 by activating a_d for writing and reading. The
following are possible after such selection and connection:

e When wr = 1, cmos gate g4 turns ON; the data at the input port di (with strength
strongO / strongl) are connected to q through ddd. It forces the latch to its state - since
q has strength pullO / pulll only - di prevails here. This constitutes the write operation.

e When rd = 1, cmos gate g5 turns ON. The net ddd is connected to the output net do.
The data stored in the latch are made available at the output port do. This
constitutes the read operation.

_ CImos
dio—m oy
Wr.u Ij.lj.lj, t|'a|1iﬂ .:I] . Llh' A L|
rd ol y s y
CITN0S
do 4— o5 q dl

Fig. 169 A RAM Cell using Bidirectional Gates

module ram_cell1(do,di,wr,rd,a_d);
output do; input di,wr,rd,a_d;

wire ddd,q,gb,wrb,rdb;

not (rdb,rd), (wrb,wr);
not(pull1,pull0) (a,gb), (ab,q);
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tranifl g3(ddd,q,a_d);
cmos g4(ddd,di,wr,wrb), g5(do,ddd,rd,rdb);
endmodule

4. TIME DELAYS WITH SWITCH PRIMITIVES

For example, an NMOS switch instantiated as
nmos gl (out, in, Ctrl );

has no delay associated with it. The instantiation
nmos (delayl) g2 (out, in, Cirl);

has delayl as the delay for the output to rise, fall, and turn OFF. The instantiation
nmos (delay _r, delay_f) g3 (out, in, ctrl);

has delay r as the rise-time for the output. delay f is the fall-time for the output. The turn-off
time is zero. The instantiation

nmos (delay_r, delay_f, delay_o) g4 (out, in, ctrl);

has delay r as the rise-time for the output. delay f is the fall-time for the output delay 0 is the
time to turn OFF when the control signal ctrl goes from 0 to 1. Delays can be assigned to the
other uni-directional gates (rcmos, pmos, rpmos, cmos, and rcmos) in a similar manner. Bi-
directional switches do not delay transmission - their rise- and fall-times are zero. They can
have only turn-on and turn-off delays associated with them, tran has no delay associated with
it.

trainfl (delay_r, delay_f) g5 (out, in, ctrl);

represents an instantiation of the controlled bi-directional switch. When control changes from
0 to 1, the switch turns on with a delay of delay_r. When control changes from 1 to 0, the
switch turns off with a delay of delay_f.

transifl (delayO) g2 (out, in, ctrl);

represents an instantiation with delayO as the delay for the switch to turn on when control
changes from 0 to 1, with the same delay for it to turn off when control changes from 1 to 0.
When a delay value is not specified in an instantiation, the turn-on and turn-off are
considered to be ideal that is, instantaneous. Delay values similar to the above illustrations
can be associated with rtranifl, tranif0, and rtranif0 as well.

5. INSTANTIATIONS WITH STRENGTHS AND DELAYS

In the most general form of instantiation, strength values and delay values can be combined.
For example, the instantiation

nmos (strongl, strong0) (delay_r, delay_f, delay o) gg (s1, s2, ctrl) ;

means the following:

[11B.Tech 182 DDTV




o It has strength strongO when in the low state and strength strongl when in the high state.
When output changes state from low to high, it has a delay time of delay_r.

e When the output changes state from high to low, it has a delay time of delay_f.
e When output turns-off it has a turn-off delay time of delay _o.

rnmos, pmos, and rpmos switches too can be instantiated in the general form in the same
manner. The general instantiation for the bi-directional gates too can be done similarly.

6. STRENGTH CONTENTION WITH TRIREG NETS

Strength contention in transistor switches can be resolved by using trireg nets. Such
storage can be assigned one of three strengths - large, medium, or small. Driving such a net
from different sources can lead to contention; the relative strength levels of the sources also
have a say in the signal level taken by the net.

EXAMPLE 33:

¢l ¢2

Sourcel | 41 ewl® a2 w2 a3

Fig. 170 An Example circuit to illustrate strength contention in switch primitives

module demo 1;

trireg(large)al; tnreg(small)a2; wire al; reg cl.c2,b:

buf{strong1 strong()) sourcel(al ,b);

tranifl swl{a2,al cl), sw2(a3,a2,c2);

initial begin

Sdisplay("tital’tc1\taZ\tc2\ta3");
#0 {cl,c2,b}=3'b111; #1 {cl,c2,b}=3'b011; #1 {cl,c2,b}=3D001;
#1 {cl,c2,b}=3'b000; #1 {cl,c2,b}=3'b100; #1 {cl,c2,b}=3D000;
#1 {cl.c2,b}=3'b010; #1 {c1,c2,b}=3'b000; #1 {c1,c2,b}=3D100;
#1  (cl.c2,b}=3'b000; #1 {cl,c2,b}=3'b010; #1 {c1,c2,b}=3D000;
#1 {cl,c2,b}=3'0001; #1 {cl,c2,b}=3'b101; #1 {cl,c2,b}=3bl1l1;
#1  $stop;
end
initial $Smonitor("%e0d\t%b\t%b t%b\t%b\t%b" $time.al c1,a2,c2.a3);
endmodule

Fig. 171 Module for the fig. 170
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Fig. 172 Changes in signal values at different times
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Fig. 173 Simulation Results
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SYSTEM TASKS, FUNCTIONS, AND COMPILER
DIRECTIVES

7. PARAMETERS

The parameter constructs facilitate such flexibility. Constants signifying timing values,
ranges of variables, wires, etc., can be specified in terms of assigned names. Such assigned
names are called parameters. The parameter values can be specified and changed to suit the
design environment or test environment. Such changes are effected and frozen at
instantiation. The assigned values cannot change during testing or synthesis. In this respect a
parameter is different from a net or a variable.

Two types of parameters are of use in modules:

e Parameters related to timings, time delays, rise and fall times, etc., are technology-
specific and used during simulation. Parameter values can be assigned or overridden with
the keyword "'specparam' preceding the assignments.

e Parameters related to design, bus width, and register size are of a different category.
They are related to the size or dimension of a specific design; they are technology-
independent. Assignment or overriding is with assignments following the keyword
"defparam™.

7.1 Timing-Related Parameter

Example 34: Half Adder Module

module ha_l(s,ca,a,b);
input a,b; output s,ca;
xor #(1,2) (s,a,b);

and #(3,4) (ca,a,b);
endmodule

/Itest-bench module tstha_l();

reg a,b; wire s,ca;

ha_I hh(s,ca,a,b);

initial begin a=0;b=0; end

always begin #5 a=I;b=0; #5 a=0;b=I; #5 a=I;b=I; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "'
,a,b,ca,s);

initial #30 Sstop;

endmodule
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7.2 Parameter Declarations and Assignments

Declaration of parameters in a design as well as assignments to them can be effected
using the keyword ""Parameter."" A declaration has the form

parameter alpha = a, beta = b
where
» parameter is the keyword,
» alpha and beta are the names assigned to two parameters and
> @, b are values assigned to alpha and beta, respectively.

In general a and b can be constant expressions. The parameter values can be
overridden during instantiation but cannot be changed during the run-time. If a parameter
assignment is made through the keyword **localparam,’ its value cannot be overridden.

Observations:

» As mentioned earlier, parameters are constants which can be altered during compilation
but not during runtime.

» A Parameter can be signed or unsigned in nature; it can be an integer or a real number.

» Its nature - signed or not, real or integral type as well as range - can be specified at the
time of declaration or decided by default based on assignment.

Examples
parameter a = 3; /I ais a positive integer
parameter b = - 3; /I'b is a signed integer
parameter ¢ = 3.0, d = 3.0e2; /Ic and d are unsigned real numbers.

In all the above cases the parameter type and range are decided by default.

parameter integer e = 3; /* e is declared to be an integer type of parameter and assigned
the value 3. */

parameter real f = 3.0; I* fis declared to be a real unsigned real number and assigned
the value 3. */

In the last two cases the parameter type is declared explicitly and remains so.

Whenever a parameter value is overridden during instantiation, type, signed/unsigned, etc.,
remain unchanged.
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Example 35: Half Adder Module

module ha_2(s,ca,a,b);

input a,b; output s,ea;

parameter dllr=I,d12f=2,d13r=3,d14f=4;
xor #(dllr,dI2f) (s,a,b);

and #(dI3r,dl4f) (ca,a,b);

endmodule

/Itest-bench module tstha_2();

reg a,b; wire s,ea;

ha 2 hh(s,ca,a,b);

initial begin a=0;b=0; end

always begin #5 a=I;b=0; #5 a=0;b=lI; #5 a=I;b=I; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "'
,a,b,ca,s);

initial #30 Sstop;

endmodule

7.3 Type Declarations for Parameters

The above examples do not have any type declaration statements for the parameters
dllr, dI2f, di3r, and dl4f. However, integer value assignments are made to each of them;
implicitly they are taken as integers by the simulator. But in general one can use constant
expressions on the right-hand side of the assignments. For example,

parameter dllr =1, di2f=dllr+ 1, dI3r=3, dl4f= dI2f*2;

As mentioned earlier, all four parameters are automatically taken as integers by the simulator.
If the above statement is modified as

parameter dllr =1, dI2f =dlIr + 1.0, dI3r =3, dl4f = dI2P2;

the parameter types will be radically different, dllr and dI3r will be treated as integers but dI2f
and hence dl4f will be treated as real. However, the numerical values assigned will remain
unaltered and hence the simulation results too will be the same.

8. PATH DELAYS

The time delays discussed so far are all delays associated with individual operations
or activities in a module. They refer to basic circuit elements in a design - at the microlevel
itself. These are called "distributed delays" in LRM. Verilog has the provision to specify and
check delays associated with total paths - from any input to any output of a module. Such
paths and delays are at the chip or system level. They are referred to as "module path delays."
Constructs available make room for specifying their paths and assigning delay values to them
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- separately or together.
8.1 Specify Blocks

Module paths are specified and values assigned to their delays through specify blocks.
They are used to specify rise time, fall time, path delays pulse widths, and the like.

specify

specparam rise_time = 5, fall_time = 6; (a =>b) = (rise_time, fall_time);
(c=>d)=(6,7);

endspecify

The block starts with the keyword "specify” and ends with the keyword
"endspecify”. Specify blocks can appear anywhere within a module. The block can have
two types of statements:

> One type starts with the keyword specparam and assigns numerical values to timing
parameters declared elsewhere. The specparam statements can appear within a
module or within a specify block. The right sides of the assignments can be constants
or constant expressions involving such parameters already assigned.

> The second type specifies paths and assigns values to time delays to them.

A specify block can have only the above types of assignments. Circuit function
assignments, assignments to module parameters, etc., are not permitted within it.

8.2 Module Paths

Module paths can be specified in different ways inside a specify block. The simplest
has the form

A*>B

Here "A" is the source and "B" the destination. The source can be an input or an inout
port. The destination can be output or an inout port. The symbol combination "*>" specifies
the path from the source to the destination. It encompasses all the possible paths from A to B.
If A and B are scalars, it signifies a single path.

« If A'is a vector and B is a scalar, it signifies all the paths from every bit of A to the scalar
B. Thus if A is a 4-bit-wide vector, 4 paths are specified.

« If Alisascalar and B is a vector, it signifies all the paths from A to every bit of the vector
B. Thus if B is an 8-bit vector, it signifies all 8 possible paths.

« If both A and B are vectors, it signifies all the possible paths from eveiy bit of the vector
A to every bit of the vector B; thus if A is a 4-bit vector and B is an 8-bit vector, it
signifies 4 * 8 = 32 possible paths; a total of 32 delay values (all being equal to each
other) are implied here.
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Fig. 174 lllustration of the difference between the operations *> and =>

Fig.174 (a) illustrates a case of all possible paths from a 2-bit vector A to another 2-
bit vector B; the specification implies 4 paths. A statement of the type

C=>D

signifies only all the parallel paths. Here C and D have to be vectors of the same size. The
path specified signifies transmission from every bit of vector C to the corresponding bit of
vector D. In this sense the path description is more restrictive than that of A*>B above.
Fig.174 (b) illustrates a case of all possible parallel paths from a 2-bit vector C to another 2-
bit vector D; the specification implies a total of 2 paths only.

The assignment
(a,b *>S) =1;
implies that
» The propagation delay from input a to output S is 1 ns and
» The propagation delay from input b to the output S is also 1 ns.

> Further the delay value is 1 ns for the change in the state of s from 0 to 1 as well as
from 1 to 0.

Similarly the statement
(a,b *>ca) = 2;

implies that the delay from a to ca as well as that from b to ca is 2 ns; further, it holds for any
transition in ca.

Example 36: Half Adder Module with path delays

module ha_7(s,ca,a,b);
input a,b; output s,ca;
specify

(a,b*>s)=l;
(a,b*>ca)=2;
endspecify xor (s,a,b);
and (ca,a,b);
endmodule

[11B.Tech 189 DDTV




/Itest-bench module tstha_7();

reg a,b; wire s,ca;

ha_7 hh(s,ca,a,b);

initial begin a=0;b=0; end

always begin #5 a=I;b=0; #5 a=0;b=I; #5 a=I;b=I; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "'
,a,b,ca,s);

initial #30 Sstop;

endmodule

8.3 Conditional Pin-to-Pin Delays

The pin to pin path of a signal may change depending on the value of another signal;
in turn the number of circuit elements in the alternate path may differ.

8.4 Edge-Sensitive Paths

Behavior level modules can have signal paths activated following an edge in a
different signal. Verilog has the provision to specify such delays during simulation. They can
be specified in a variety of ways. The path may get activated following a positive edge or a
negative edge in a signal. The path delay may be specified for rise or fall in the output or for
positive or negative polarity transitions separately. The delay assignment can be made
conditional on an expression; such a path specification is an "edge sensitive state dependent
path”.

8.5 Pulse Filtering and its Control

All transitions on an input pin with less than a specified module path delay are termed
"pulses.” Normally, when a module path delay is specified, all pulses are ignored; that is, the
simulator does not take cognizance of such narrow transitions. However, response to such
narrow pulses can be specified through specparam in a specify block. A statement

specparam PATHPULSES$ (X,y) = (a, b);
implies the following concerning the module pulse path from X to y:

« Ignore all pulses of width less than a ns. a is referred to as the "rejection limit" for the
pulse path.

- Take cognizance of all the pulses wider than b ns. Note that the specification has
relevance only if the delay value for the pulse path (specified in the specify block) is
larger than b.

« For all pulses of width value between a and b, the output is in error and in x state.

The PATHPULSES specification is governed by the following:

- It has to appear within a specify block as a specparam assignment as shown above.
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It specifies the limits for the path pulse-error limit as well as reject limit for the specified
path.

A statement as
specparam PATHPULSES$ = (a, b);

implies that a and b are the error and reject limits for the pulse widths for all the paths
specified within the specify block; the simulator checks for the pulse width and if it is
between a and b values, the output goes to x state.

A set of statements

specparam PATHPULSES$ (X,Y) = (a, b);
specparam PATHPULSES$ =(cd);

implies that for the path from X to Y, a and b are the error and reject limits, respectively;
further, for all other pulse paths within the specify block, the limits for error and rejection
are c and d, respectively. If only one limit is specified as

specparam PATHPULSES =a;

a is taken as the error limit as well as reject limit for the concerned paths.

9. MODULE PARAMETERS

Module parameters are associated with size of bus, register, memory, ALU, and so on.
They can be specified within the concerned module but their value can be altered during
instantiation. The alterations can be brought about through assignments made with
defparam. Such defparam assignments can appear anywhere in a module.The rules of
assigning values for the module parameters, deciding their size, type, etc., are all similar to
those of specify parameters.

module alu 6 (d, co, a, b, fcct);

parameter msb=3;

output [msb:0] d; output co; wire[ msb:0]d; input cci;

mput [msb: 0] a, b; mput [1: 0] f;

spectfy (a,b=>d)=(1,2); (ab,cci*>co)=1; endspecify

assign {co,d}=(F==2'b00)(atb+ect)((F=2'01)(a-b):((F=2b10)?
11bza"b}:{1bz,~a}));

endmodule

//test-bench

module tst alu7();

defparam aa.msb=7; parameter nl=7;

reg [nl:0a,b; reg(1:0] f; reg cci; wire[nl:0]d; wire co;
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alu 6aa(d.co,ab,feci);

mitial begin cci=1'00; £2'b00;a=8'h00;5=8'h00; #30 Sstop;end

always begin

#3 cel =1'b0;f=2'000;a=8"h01;b=8'h00; #3 cci =1b1;=2b00,2=8'h08:b=R'hOf;
#3 cel =1'b1:f=2'001:a=8'h02:6=8'h01; #3 cci =1b0;=201:a=8'h23;b=8'h27;
#3 cel =1'b1:f=2'001;a=8'23:6=8'n23; #3 cci =1b1;=2510:a=8'h23;b=4'h23;
#

cel =1'b1:f=2'b11:a=8"h2f:b=8"h2¢;
end
initial $monitor($time, " cc1=%b , a=%b b="%b .f="%b .d =%b co="%b" cci
ab.fdco);
endmodule

Fig.175 ALU Module

10. SYSTEM TASKS AND FUNCTIONS

Verilog has a number of System Tasks and Functions defined in the LRM. They are
for taking output from simulation, control simulation, debugging design modules, testing
modules for specifications, etc. A "$" sign preceding a word or a word group signifies a
system task or a system function. Some of the system tasks and functions have been
extensively used in the earlier chapters. Some others with the potential for common use are
described and illustrated here. The complete list is available in the LRM.

10.1 Output Tasks

A number of system tasks are available to output values of variables and selected
messages, etc., on the monitor. Out of these $monitor and $display tasks have been
extensively used in the preceding chapters. These and related tasks are discussed below.

% $display = Used to display the arguments in the desired format.
$displayb
$displayo
$displayh

>
>
>
> S$displayd

R/
0.0

$write = Used to display the argument with specified format but does not advance to
the new line

$writeb

$writeo

$writeh

$writed

YVVVYV

R/
0.0

%m > Used to display instantiated modules in another module.
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%+ $strobe > Used to display sampled version of a variable or a set of variables.

10.1 Display Tasks

The $display task, whenever encountered, displays the arguments in the desired
format; and the display advances to a new line. $ write task carries out the desired display but
does not advance to the new line. For both the format is identical to that of scanf and printf
in C language. The features are briefly outlined here:

- The arguments are displayed in the same order as they appear in the display statement.
- The arguments can be variables, an expression involving variables, or quoted strings.

. The strings are output as such except the escape sequences. An escape sequence starts
with the character \ or the character %.

- "\"signifies one of a set of special characters.

«  "%m" signifies that the hierarchical name of the particular argument is to be displayed
"%" followed by a character specifies the format for display of the following argument
or an aspect of the following argument.

. If the format for the display of an argument is not specified, a default format is assumed.
It is binary for $displayb and $writeb, octal for $displayo and $writeo, decimal for
$displayd and $writed, hex for $displayh and $writeh.

« If any argument is in the form of an expression, it is evaluated and the result displayed
or written; it is sized automatically. With decimal numbers the leading zeros are
suppressed. Insertion of a "0" character (zero digit) between the "%" symbol and the
radix overrides the automatic sizing.

11. FILE-BASED TASKS AND FUNCTIONS

LRM has the provision to accommodate and integrate design and test modules kept in
different files. It makes room for structuring the design in an elegant manner and developing
it with a "cross-functional” approach. Different facilities are specified in the LRM. That to
output results to a file is discussed here as a specific case. To carry out any file-based task,
the file has to be opened, reading, writing, etc., completed and the file closed. The keywords
for all file-based tasks start with the letter f to distinguish them from the other tasks.

Writing out to a file

> S$fdisplay
$fwrite
$fstrobe
$fmonitor
$fflush
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reading from a file

> $readmemb
> $readmemh
> S$fscanf

String formatting functions

> $swrite
> $sformat
> $sscanf

Example 37: Half Adder Test Bench

module ha_test; _ _
reg a,b; wire s,co; integer filen;

ha hh(s,co,a,b);
initial
begin
a=0;
b=0;
filen=$fopen(“ha_f.txt”);
end
always
begin
#5 a=0; b=1;
#5 a=1; b=0;
#5 a=1; b=1;
#5 a=0; b=0;
end
initial $fmonitor(filen, $time“a=%b, b=%b, s=%b, co=2%b", a,b,s,co);
initia
begin
$fdisplay (filen);
#30 $stop;
$fclose(filen);
end
endmodule

12. COMPILER DIRECTIVES

A number of compiler directives are available in Verilog. They allow for macros,
inclusion of files, and timescale-related parameters for simulation. All compiler directives are
preceded by the ' (accent grave) character. Representative compiler directives are discussed
here with illustrations.

121 ‘define Directive

The *"define directive is for macro substitution. It substitutes the macro by a defined
text. Hence a macro name can be used in place of such a group of characters in the listing
wherever the group is to appear. Subsequently, the macro name can be substituted during
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compilation by the actual text. The ‘define directive is used to define and associate the

desired text with the macro name.

The “‘define compiler directive can also be used to substitute a number by a macro

name. It allows for deciding bus-width, specific delay values, etc., at compilation time.

module alu a (d, co, a, b, fcci);

“define add 2'b00
“define subtract 2'b01
“define exor 2'b10

output [3:0] d; utput co; wire[3:0]d;
input cci; input [3 : 0 ] a, b; input [1 : 0] £

assign {co,d}=(F="add)? a+b+cci):(( == subtract)?(a-b):((F="exor)?

{1'bz,a"b}:{1'bz,~a}));
endmodule

Fig.176 ALU Module

12.2 Time-Related Tasks

A set of compiler directives and system tasks relate to the running time of simulation
as well as the delays in the concerned modules. A wide range of timescales as well as

precision levels are available for selection during simulation.

‘timescale

The “ timescale compiler directive allows the time scale to be specified for the design. When
a ‘timescale directive is encountered in a file, the same is valid for all subsequent modules

within the file. The * timescale directive has two components.

Specifies the unitof time scale: it

can be s, ms, us, ns, ps, or f§
Specifies the unit of precision: it
f can be s, ms, us, ns, ps, or f§

‘timescale dus/Dns
Spcciﬁc.x the order of magnitude of
prccisiun: itcan be 1, 10,0r 100

Specifies the order of magnitude of
time scale: it can be 1, 10, or 100

Fig.177 Timescale structure
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A few examples are given below:
* ‘timescale 1 ms/100 ps

implies that in the following design all the time values specified are in ms and they have a
precision of 100 ps. Thus

3, 3.0, 3.022 are all inteipreted as 3 ms;

3.1, 3.12,3.199 are all inteipreted as 3.1 ms; and
0.1, 0.12 are interpreted as 100 ps .

e ‘timescale 1 ms/1 ms

implies that in the following design all the time values specified are in ms and they have a
precision of 1 ms. Thus

3,3.0,3.022, 3.1, 3.12, 3.199 are all interpreted as 3 ms and
0.1, 0.12 are interpreted as 0 ms .
$timeformat

The timescale and the format for display can be changed during simulation with the
help of $timef ormat task. The syntax for the task is explained in Figure 11.58. Whenever
"p,s" (microsecond) is to be specified for defining or changing time scale, it is specified as
"us." Conventions for all other timescale values (s, ms, ns, ps, and fs) remain unaltered.

A negative number in the 0 to -15 range signifying time unit: O stands for s, -1 for 0.1s
and so on; -15 implies fem to second. any convenient string to be displayed as such

$timeformat ( -aa)

An integer specifying precision: it represents the number of digits to the right of the
decimal point "cc"”, dd

An integer specifying the field width for the display
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Simulation Time

Simulation time value can be obtained, displayed or used in specific expressions; a
limited amount of flexibility is available here: -

o S$time returns the value of simulation time as an integer.

* Srealtime returns the value of simulation time as a real number.

Default Timescale

If the time scale values are not specified in the source file, simulation is carried out
with the default values specified in the tool used for simulation. The default value of time

unit is taken as nanosecond

13. HIERARCHICAL ACCESS

hier_a

fad

alpha

[l B.Tech

fad.a, fad.b, fadfad X  fad.a, fad.b, fad.fad X

fad

Fig. 178 Hierarchical Access

197

beta

fad

DDTV




module hier a;
integer aa, bb, cc, pp, qq, m;

mitial
begin: alpha
aa=2:bb=13;
ce = fad(aa,bb);
Sdisplay("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad b, fad fad);
end
mitial
begin: beta
pp = 400 =6;
rr = fad(pp,qg);
Sdisplay("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad);
end
function integer fad;
mput [7:0] a, b;
fad=a+b;
endfunction
endmodule

#fada=2 fadb=3, fadfad=5
#fad.a=4, fad.b =6, fad fad= 10
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module hier d;
integer aa, bb, cc, pp. qq, Ir;

nitial
begin
aa=2:bb=13;
tad(aa,bb.cc);
$display("tad.a = %0d, tad.b = %0d, tad.c =%0d", tad.a,tad.b,tad.c);
end
imitial
begin
PP = %49 =6;
tad(pp.qq,mm);
Sdisplay("tad.a = %0d, tad.b = %0d, tad.c =%0d", tad.a,tad.b.tad.c);
end
task tad;
input a, b;
output c;
integer a,b,c;
c=a+b;
endtask
endmodule

#tada=2 tadb=3 tadc=5
#tad.a=4 tadb =6, tadc=10

Fig.179 Hierarchical Access using functions

15.USER DEFINED PRIMITIVES (UDP)

The primitives available in Verilog are all of the gate or switch types. Verilog has the
provision for the user to define primitives - called "user defined primitive (UDP)" and use
them. A UDP can be defined anywhere in a source text and instantiated in any of the
modules. Their definition is in the form of a table in a specific format. It makes the UDP
types of functions simple, elegant, and attractive.

UDPs are basically of two types - combinational and sequential. A combinational
UDP is used to define a combinational scalar function and a sequential UDP for a sequential
function.
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15.1 Combinational UDPs

A combinational UDP accepts a set of scalar inputs and gives a scalar output. An
inout declaration is not supported by a UDP. The UDP definition is on par with that of a
module; that is, it is defined independently like a module and can be used in any other
module. The definition cannot be within any other module.

primitive udp and (out,in1, in2);

output out;

inputini, inZ;

table

i Inl In2 Out
0 0: 0;
0 1: 0:
1 0: 0;
1 i 1;

endtable

endprimitive

Fig.180 and gate primitive

«  The first statement starts with the keyword "primitive", it is followed by the name
assigned to the primitive and the port declarations.

« A UDP can have only one output port. It has to be the first in the port list.
«  All the ports following the first are input ports and are all scalars.

« inout ports are not permitted in a UDP definition.

«  Output and input are declared in the body of the UDP.

«  The behavior block of the primitive is given in the form of a table. It is specified between
keywords table and endtable.

- The combinational function is defined as a set of rows ( akin to the truth table).

- All the input values are specified first - each in a separate field in the same order as they
appear in the port declaration.

« Acolon and then the output value follow the set of input values. The statement ends with
a semicolon - as with every statement in Verilog.

« A comment line is inserted in the example following the "'table™ entry. It facilitates
understanding the tabular entries.

- All the inputs are nets - wire-type. Hence there is no need for a separate type definition.
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- Output can be of the net or reg type depending upon the type of primitive - explained
later.

«  The last keyword statement - ""endprimitive’ — signifies the end of the definition.

15.2 Sequential UDPs

Any sequential circuit has a set of possible states. When it is in one of the specified
states, the next state to be taken is described as a function of the input logic variables and the
present state [Wakerly], A positive or a negative going edge or a simple change in a logic
variable can trigger the transition from the present state of the circuit to the next state. A
sequential UDP can accommodate all these. The definition still remains tabular as with the
combinational UDP. The next state can be specified in terms of the present state, the values
of input logic variables and their transitions. The definition differs from that of a
combinational UDP in two respects:

» The output has to be defined as a reg. If a change in any of the inputs so demands, the
output can change.

« Values of all the input variables as well as the present state of the output can affect the
next state of the output. In each row the input values are entered in different fields in the
same sequence as they are specified in the input port list. It is followed by a colon (:).
The value of the present state is entered in the next field which is again followed by a
colon (). The next state value of the output occupies the last field. A semicolon (;)
signifies the end of a row definition.

153  Sequential UDPs and Tasks

Sequential UDPs and tasks are functionally similar. Tasks are defined inside modules
and used inside the module of definition. They are not accessible to other modules. In
contrast, sequential UDPs are like other primitives and modules. They can be instantiated in
any other module of a design.

154 UDP Instantiation with Delays

Outputs of UDPs also can take on values with time delays. The delays can be
specified separately for the rising and falling transitions on the output. For example, an
instantiation as

udp_and_b #(1,2) g1 (out, inl, in2);

can be used to instantiate the UDF of Figure 9.25 for carry output generation. Here the output
transition to 1 (rising edge) takes effect with a time delay of 1 ns. The output transition to 0
(falling edge) takes effect with a time delay of 2 ns. If only one time delay were specified, the
same holds good for the rising as well as the falling edges of the output transition.
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155 Vector-Type Instantiation of UDP

UDP definitions are scalar in nature. They can be used with vectors with proper
declarations. For example, the full-adder module fa in Figure 9.26 can be instantiated as an 8-
bit vector to form an 8-bit adder. The instantiation statement can be

fa [7:0] aa(co, s, a, b, {c0[6:0],1'b0});

s (sum), co (carry output), a (first input), and b(second input) are all 8-bit vectors here. The
vector type of instantiation makes the design description compact; however, it may not be
supported by some simulators.
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UNIT -V
SEQUENTIAL CIRCUIT DESCRIPTION

1. SEQUENTIAL MODELS

In digital circuits, storage of data is done either by feedback, or by gate capacitances

that are refreshed frequently.
Sequential
Models |

| |
Feedback Capacitive Implicit
Model Model Model

Fig.181 Sequential models

1.1 FEEDBACK MODEL.:

Fig.182 Feedback Model

1.2 CAPACITIVE MODEL

Fig.183Capacitive model
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When ¢ becomes 1 the value of D is saved in the input gate of the inverter and when ¢
becomes 0 this value will be saved until the next time that ¢ becomes 1 again.

1.3 IMPLICIT MODEL

15 o)

1R
=

Fig.184 Implicit model

Feedback and capacitive models are technology dependent and have the problem of
being too detailed and too slow to simulate. Verilog offers language constructs that are
technology independent and allow much more efficient simulation of circuits with a large
number of storage elements.

2. BASIC MEMORY COMPONENTS

Basic Memory

Components

User Defined

Sequental
Primitives

Gate Level
Primitives

Memorv Elements .
¥ Behavioral

Using

. Memorv Elements
Assignments ¥

Memory Vectors

Flip-flop Timing L2

and Arrays

Fig.185 Basic Memory components
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2.1GATE LEVEL PRIMITIVES

Fig.186 Basic Latch

Example 38: Basic Latch

“timescale 1ns/100ps
module latch (input s, r, output g, q_b);
nor #(4)
gl (a_b,s q),
92(q,r,q_b);
endmodule

g and g_b outputs are initially X and remain at this ambiguous state for as long as s
and rremain 0. Simultaneous assertion of both inputs results in loss of memory.

Fig.187 Latch with parameters
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Example 39: Latch with Parameters

“timescale 1ns/100ps

module latch_p #(parameter tplh=3, tphl=5) (input s, r, ¢, output q, g_b );
wire _s, r;
nand #(tplh,tphl)

gl(_s,s¢C),
g2(_r,r,c),
93(0,_s,q_b),
g4 (q_b,_r,q);
endmodule
MName ‘g"l_|| ol || o400 o BDD 0 B e e 40 B0 ns‘
0P8} an
= F— —
13ns
- ——— 1
- 1] [‘Bﬁ’
] |
q CO I |
Qb % | | |

Fig.188 Output waveforms for latch

Fig.189 Master slave flip-flop

Example 40: Master slave flip-flop

“timescale 1ns/100ps
module master_slave (input d, ¢, output g, q_b);
wire gm, gm_b;
defparam master.tplh=4, master.tphl=4, slave.tplh=4, slave.tphl=4;
latch_p
master ( d, ~d, ¢, gm, gm_b),
slave (gm,gm_b,~c,q,q_b);
endmodule
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2.2 USER DEFINED SEQUENTIAL PRIMITIVES
= Verilog provides language constructs for defining sequential UDPs:
= Faster Simulation of memory elements

= Correspondence to specific component libraries

Example 41: Latch primitive

primitive latch(q,s, r,c);
output g;
reg q;
inputs, r, c;
initial g=1"b0;
table
Il src q q+;

101:°
endtable
endprimitive

primitive latch(q, s, r,c);
table

Il src g g+;

I e

101:?2:1 ;
endtable
endprimitive

2.3 MEMORY ELEMENTS USING ASSIGNMENTS

When a block’s clock input is 0, it puts its output back to itself (feedback), and when
its clock is 1it puts its data input into its output.

Example 42:

“timescale 1ns/100ps
module master_slave_p #(parameter delay=3)
(input d, c, output q);
wire qm;
assign #(delay) gm = c?d : gm;
assign #(delay) g =~c?gm:q;
endmodule
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Fig.190 Master Slave Flip-flop

2.4 BEHAVIORAL MEMORY ELEMENTS
Behavioral Coding:

e A more abstract and easier way of writing Verilog code for a latch or flip-flop.
e The storage of data and its sensitivity to its clock and other control inputs will be implied
in the way model is written.

Behavioral
Memory

Elements

Latch Flip-flop

Modeling Modeling

Flip-flop Other
with Set-Reset o Storage Element
Control Modeling Styles

Fig.191 Behavioral Memory Elements
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2.4.1 LATCH MODELING
Example 43: A latch

“timescale 1ns/100ps
module latch (input d, ¢, output reg g, g_b );

always @(cord)
if (c)
begin
#4 q=d;
#3q_b=-~d;
end
endmodule

“timescale 1ns/100ps
module latch (input d, ¢, output reg g, q_b );
always @(cord)
if (¢)
begin
q <=#4 d;
g_b <=#3 ~d;
end
endmodule

2.4.2 FLIP-FLOP MODELING
Example 44:

“timescale 1ns/100ps
module d_ff (input d, clk, output reg g, q_b );
always @( posedge clk )
begin
g <=#4 d;
q_b<=#3 ~d;
end
endmodule

2.4.3 FLIP-FLOP WITH SET-RESET CONTROL
Example 45:

“timescale 1ns/100ps
module d_ff_sr_Synch (input d, s, r, clk, output reg g, g_b );
always @(posedge clk) begin
if('s) begin
q<=#41'b1;
g_b <=#3 1'b0;
end else if( r) begin
g <=#4 1'b0;
g_b <=#31'bl;
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end else begin
g<=#4d;
g_b<=#3~d;
end
end
endmodule

module d_ff_sr_Synch (input d, s, r, clk,
outputregqg,gq_b);
always @(posedge clk) begin
if( s) begin

end

if( s) begin
q<=#41b1;
q_b<=#3 1'b0;
end else if( r) begin
g <=#41'b0;
g_b <=#31'bl;
end else begin
q<=#4d;
g_b<=#3~d;
end

“timescale 1ns/100ps
module d_ff_sr_Asynch (inputd, s, r, clk, output reg g, q_b );
always @( posedge clk, posedge s, posedge r )
begin
if( s) begin
q<=#41'b1;
q_b<=#31'b0;
end else if( r) begin
g <=#41'b0;
g_b<=#31'bl;
end else begin
g<=#4d;
q_b<=#3~d;
end
end
endmodule
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module d_ff_sr_Asynch (inputd, s, r, clk,
outputregq,q_b);
always @( posedge clk, posedge s, posedge r ) begin
if( s) begin

end
end
endmodule

if(s) begin

g <=#41'bl;

q_b<=#3 1'b0;
end else if( r) begin

q <=#41'b0;

g_b <=#31'bl;
end else begin

g <=#4 d;

q_b<=#3 ~d;
end

2.4.4 OTHER STORAGE ELEMENT MODELING STYLES
Example 46:

“timescale 1ns/100ps
module latch (input d, ¢, output reg g, q_b );
always begin
wait (¢ );
#4 q<=d;
#3q_b<=~d;
end
endmodule
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2.5 FLIP-FLOP TIMING

Time

Fig.192 Flip-flop Timing
Setup Time

= The Minimum necessary time that a data input requires to setup before it is clocked into a
flip-flop.

" Verilog construct for checking the setup time: $setup task

" The $setup task:

= Takes flip-flop data input, active clock edge and the setup time as its parameters.
Is used within a specify block.

Ex:  specify
$setup (d, posedge clk, 5);
endspecify

Hold Time

=  The Minimum necessary time a flip-flop data input must stay stable (holds its value)
after it is clocked.
Verilog construct for checking the setup time: $hold task
The $setup task:
Takes flip-flop data input, active clock edge and the required hold time as its parameters.
Is used within a specify block.
Ex:  specify
$hold ( posedge clk, d, 3);
endspecify

» The Verilog $setuphold task combines setup and hold timing checks.
Ex: $setuphold (posedge clk, d, 5, 3);

Width And Period

= Verilog $width and $period check for minimum pulse width and period.

= Pulse Width: Checks the time from a specified edge of a reference signal to its opposite
edge.

= Period: Checks the time from a specified edge of a reference signal to the same edge.
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EX:

specify

$setuphold ( posedge clk, d, 5, 3);
$width (posedge r, 4);
$width (posedge s, 4);

$period (negedge clk, 43);

endspecify

3. FUNCTIONAL REGISTER

3.1 SHIFT REGISTERS

3.2 COUNTERS

[l B.Tech
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Fig. 193 Basic Shift Register

d_in]3:0]
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Fig.194 Grey Code Counter
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4. STATE MACHINE CODING

State Machine

Coding

Moore Machines u g Mealy Machines

Huffinan A DMMore Modular
Coding Style Stvle

A ROM Based

Controller

Fig.194 State Machine Coding
Moore Machine :

= A state machine in which all outputs are carefully synchronized with the circuit clock.

» |n the state diagram form, each state of the machine specifies its outputs independent of
circuit inputs.

= In Verilog code of a state machine, only circuit state variables participate in the output
expression of the circuit.

Mealy Machine :
= |s different from a Moore machine in that its output depends on its current state and
inputs while in that state.

= State transitions and clocking and resetting the machine are no different from those of a
Moore machine. The same coding techniques are used.
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5. COMPONENT TEST AND VERIFICATION

5.1 TEST BENCH

Testbench

Verilog simulation environments provide two kinds of display of
simulation results:

* Graphical

® Textual
Some also provide tools for editing input test data to a design module
that is being tested.
These tools are referred to as Waveform Editors.
Waveform editors have 2 problems:

* Usually are good only for small desi

= Each simulation environment uses a different procedure for

waveform editing,

This problem can be solved by use of Verilog Testbenches.

Testbench

* A Verilog Testbench is:
* A Verilog module
* Instantiates Module Under Test (M
* Applies data to MUT,

Monitors the output.

* A module and its testbench forms a Simulation Module in which MUT
is tested for the same data regardless of what simulation environment is
used.
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Testbench

Testbench

S

Combinational Sequential
Circuit Circuit
Testing Testing

5.2 TEST BENCH TECHNIQUES:

Testbench Techniques

Testbench

Techniques

Data Application
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5. DESIGN VERIFICATION:

Design Verification

= Formal verification:

* A way of automating design verification by eliminating testbenches
and problems associated with their data generation and response
observation.

* Tools do not perform simulation, but come up with a Yes/No
answer for every property the design is being checked for.

* Eliminating data generation and response observation

= Assertion verification:

= Reduce or eliminate efforts needed for analyzing output responses

* While the design is being simulated with its testbench data,
assertion monitors continuously check for correct design behavior.
In conditions that the design is misbehaving, the monitor is said to
fire to alert the designer of the problem.

6. ASSERTION VERIFICATION:

Assertion Verification

Assertion

Verification

Assertion Open

Verification Verification
Benefits Library

Using
Assertion
Monitors

Assertion
Templates
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Assertion Verification Benefits

= Ways in which assertion monitors are helpful:

* Designer Discipline: With placing an assertion in a design, a
designer is disciplining him/her-self to look into the design more
carefully and extract properties.

Observability: Assertions add monitoring points to a design that
make it more observable.

Formal Verification Ready: Having inserted assertion monitors to a
design, readies it for verification by a formal verification tool.
Executable Comments: Assertion monitors can be regarded as
comments that explain some features or behavior of a design.

Self Contained Designs: A design with assertion monitors has the
design description and its test procedure all in one Verilog module.

Using Assertion Monitors

Assertion
Monitors
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Assertion Templates

Assertion

Templates

Initial
Resetting

Valid States

Text Based Testbenches

= Verilog has an extensive set of tasks for reading and writing external
files:
* Opening and closing files,
= Positioning a pointer in a file,
= Writing or appending a file
= Reading files
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Question Bank

(a) Short Questions with Answers

1. What is the difference between a function and a task?
Answer

Functions Tasks

‘Can enable another function but not another task. HCan enable other tasks and functions. ‘

‘Executes in 0 simulation time. HMay execute in non-zero simulation time. ‘
Must not contain any delay, event, or timing May contain delay, event, or timing control
control statements. statements.
Must have at least one input argument. They can ||May have zero or more arguments of type input,
have more than one input. output, or inout.
Functions always return a single value. They Tasks do not return with a value, but can pass
cannot have output or inout arguments. multiple values through output and inout

arguments.

2. What is the difference between $display and $monitor?
Answer
The syntax of both statements is same. $monitor continuously monitors the values of the
variables or signals specified in the parameter list and executes the statement whenever the
value of any one of the variable/parameter changes. Unlike $display, $monitor needs to be
invoked only once.

3. What is the difference between wire and reg?
Answer

Wire is a net data type, represents connections between hardware elements. It's default value
is z. Where as reg is a register data type, which represent data storage elements. Registers
retain value until another value is placed onto them. It's default value is x.

4. What is the difference between blocking and non-blocking assignments?
Answer
Blocking assignment statements are executed in the order they are specified in a sequential
block. A blocking assignment will not block execution of statements that follow in a parallel
block. The "™ = " operator is used to specify blocking assignments.
Nonblocking assignments allow scheduling of assignments without blocking execution of the
statements that follow in a sequential block. A " <= " operator is used to specify nonblocking
assignments.
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10.

11.

12.

13.
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What is the difference between <casex, casez and case statements?
Answer

casez treats all z values in the case expression as don't cares. casex treats all x and z values in
the case expression as don't cares.

What is the difference between transport delay and inertial delay?
Answer

Transport delay is the delay caused by the wires connecting the gates. Wire do delay the
signal they carry, this is due to the wire resistance, capacitance, and inductance. Simply
transport delay is propagation delay on a wire. In verilog transport delay is modeled as
follows:

a <= #10 b; Inertial delay is the time taken by a gate to change its output. It is the gate delay.
In verilog inertial delay is modeled as follows: assign #10 a = b;

What is the difference  between unary and logical operators?
Answer
Unary operators have only one operand, where as logical operators are of two operands.

What is the difference between ( = = , I = ) and (= ==, 1 = = )?
Answer

The equality operators (==, ! =) will yield an x if either operand has x or z in its bits. Where
as the case equality operators (===, ! = =) compare both operands bit by bit and compare

all bits, including x and z.

What are the difference between Verilog and VHDL?
Answer

Verilog is similar to C programming language and VHDL is similar to ADA. Verilog is
simple to learn and simple to write code where as VHDL takes longer time to learn and is bit
complicated when it comes to write codes.

Tell me how blocking and non blocking statements get executed?
Answer

Execution of blocking assignments can be viewed as a one-step process:
1. Evaluate the RHS (right-hand side equation) and update the LHS (left-hand side
expression) of the blocking assignment without interruption from any other Verilog
statement. A blocking assignment "blocks™ trailing assignments in the same always block
from occurring until after the current assignment has been completed

Execution of nonblocking assignments can be viewed as a two-step process:
1. Evaluate the RHS of nonblocking statements at the beginning of the time step. 2. Update
the LHS of nonblocking statements at the end of the time step.

Variable and signal which will be Updated first?
Signals

What is sensitivity list?
The sensitivity list indicates that when a change occurs to any one of elements in the list
change, begin...end statement inside that always block will get executed.

In a pure combinational circuit is it necessary to mention all the inputs in sensitivity
disk? if yes, why?
Yes in a pure combinational circuit is it necessary to mention all the inputs in sensitivity disk
other wise it will result in pre and post synthesis mismatch.




14. What is pli?why is it used?
Programming Language Interface (PLI) of Verilog HDL is a mechanism to interface Verilog
programs with programs written in C language. It also provides mechanism to access internal
databases of the simulator from the C program.
PL1 is used for implementing system calls which would have been hard to do otherwise (or
impossible) using Verilog syntax. Or, in other words, you can take advantage of both the
paradigms - parallel and hardware related features of Verilog and sequential flow of C - using
PLI.

15. There is a triangle and on it there are 3 ants one on each corner and are free to move
along sides of triangle what is probability that they will collide?
Ants can move only along edges of triangle in either of direction, let’s say one is represented
by 1 and another by 0, since there are 3 sides eight combinations are possible, when all ants
are going in same direction they won’t collide that is 111 or 000 so probability of not collision
is 2/8=1/4 or collision probability is 6/8=3/4
Verilog interview Questions

16. How to write FSM is verilog?
there r mainly 4 ways 2 write fsm code
1) using 1 process where all input decoder, present state, and output decoder r combine in one
process.
2) using 2 process where all comb ckt and sequential ckt separated in different process
3) using 2 process where input decoder and persent state r combine and output decoder
seperated in other process
4) using 3 process where all three, input decoder, present state and output decoder r separated
in 3 process.

17. What is difference between freeze deposit and force?
$deposit(variable, value);
This system task sets a Verilog register or net to the specified value. variable is the
register or net to be changed; value is the new value for the register or net. The value
remains until there is a subsequent driver transaction or another $deposit task for the
same register or net. This system task operates identically to the ModelSim
force -deposit command.
The force command has -freeze, -drive, and -deposit options. When none of these is
specified, then -freeze is assumed for unresolved signals and -drive is assumed for resolved
signals. This is designed to provide compatibility with force files. But if you prefer -freeze
as the default for both resolved and unresolved signals.

18. What is the difference between the following two lines of Verilog code?
#5a="b;
a=#5b;
#5 a = b; Wait five time units before doing the action for "a = b;".
a =#5Db; The value of b is calculated and stored in an internal temp register, After five time
units, assign this stored value to a.

19. What is the difference between:
c=foo?a:b and
if (foo) c=a;elsec=b;
The ? merges answers if the condition is "x", so for instance if foo = 1'bx, a="'b10, and b =
'b11, you'd get ¢ = 'b1x. On the other hand, if treats Xs or Zs as FALSE, so you'd always get ¢
=h.

20. What does “timescale 1 ns/ 1 ps signify in a verilog code?
'timescale directive is a compiler directive.lt is used to measure simulation time or delay time.
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Usage : ‘timescale / reference_time_unit : Specifies the unit of measurement for times and
delays. time_precision: specifies the precision to which the delays are rounded off.

21. What is the difference between === and == ?
output of "=="can be 1, 0 or X.

output of "==="can only be 0 or 1.

When you are comparing 2 nos using "=="and if one/both the numbers have one or more bits
as "x" then the output would be "X" . But if use "===" outpout would be 0 or 1.

e.g A=3blx0

B = 3'b10x

A == B will give X as output.

A === B will give 0 as output.

"=="s used for comparison of only 1's and O's .It can't compare Xs. If any bit of the input is
X output will be X

"===" s used for comparison of X also.

22. How to generate sine wav using verilog coding style?
A: The easiest and efficient way to generate sine wave is using CORDIC Algorithm.

23. What is the difference between wire and reg?
Net types: (wire,tri)Physical connection between structural elements. Value assigned by a
continuous assignment or a gate output. Register type: (reg, integer, time, real, real time)
represents abstract data storage element. Assigned values only within an always statement or
an initial statement. The main difference between wire and reg is wire cannot hold (store) the
value when there no connection between a and b like a->b, if there is no connection in a and
b, wire loose value. But reg can hold the value even if there in no connection. Default
values:wire is Z,reg is X.

24. what is verilog case (1) ?
wire [3:0] x;
always @(...) begin
case (1'bl)
X[0]: SOMETHING1;
X[1]: SOMETHINGZ2;
X[2]: SOMETHINGS;
X[3]: SOMETHING4;
endcase
end
The case statement walks down the list of cases and executes the first one that matches. So
here, if the lowest 1-bit of x is bit 2, then something3 is the statement that will get executed
(or selected by the logic).

25. Why is it that "if (2'b01 & 2'b10)..."" doesn't run the true case?
This is a popular coding error. You used the bit wise AND operator (&) where you meant to
use the logical AND operator (&&).

26. What is difference between Verilog full case and parallel case?
A "full" case statement is a case statement in which all possible case-expression binary
patterns can be matched to a case item or to a case default. If a case statement does not
include a case default and if it is possible to find a binary case expression that does not match
any of the defined case items, the case statement is not "full."”
A "parallel” case statement is a case statement in which it is only possible to match a case
expression to one and only one case item. If it is possible to find a case expression that would
match more than one case item, the matching case items are called "overlapping" case items
and the case statement is not "parallel.”
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27.

28.

Write a verilog code to swap contents of two registers with and without a temporary
register?

With temp reg :

always @ (posedge clock)

begin

temp=b;

b=a;

a=temp;

end

Without temp reg:
always @ (posedge clock)
begin

a<=b;

b<=g;

end

Difference between blocking and non-blocking?

The Verilog language has two forms of the procedural assignment statement: blocking and
non-blocking. The two are distinguished by the = and <= assignment operators. The blocking
assignment statement (= operator) acts much like in traditional programming languages. The
whole statement is done before control passes on to the next statement. The non-blocking (<=
operator) evaluates all the right-hand sides for the current time unit and assigns the left-hand
sides at the end of the time unit. For example, the following Verilog program

/I testing blocking and non-blocking assignment

module blocking;

reg [0:7] A, B;

initial begin: initl

A=3;

#1 A= A+ 1; // blocking procedural assignment
B=A+1;

$display("Blocking: A= %b B=%b", A, B); A=3;
#1 A<= A+ 1; /I non-blocking procedural assignment
B<=A+1,

#1 $display("Non-blocking: A= %b B= %b", A, B );
end

endmodule

produces the following output:
Blocking: A= 00000100 B= 00000101
Non-blocking: A= 00000100 B= 00000100

The effect is for all the non-blocking assignments to use the old values of the variables at the
beginning of the current time unit and to assign the registers new values at the end of the
current time unit. This reflects how register transfers occur in some hardware systems.
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blocking procedural assignment is used for combinational logic and non-blocking procedural
assignment for sequential

29. Tell me about verilog file 1/0?
OPEN A FILE
integer file;
file = $fopenr(“filename™);
file = $fopenw("filename™);
file = $fopena(“filename™);
The function $fopenr opens an existing file for reading. $fopenw opens a new file for writing,
and $fopena opens a new file for writing where any data will be appended to the end of the
file. The file name can be either a quoted string or a reg holding the file name. If the file was
successfully opened, it returns an integer containing the file number (1..MAX_FILES) or
NULL (0) if there was an error. Note that these functions are not the same as the built-in
system function $fopen which opens a file for writing by $fdisplay. The files are opened in C
with 'rb’, 'wb', and 'ab’ which allows reading and writing binary data on the PC. The 'b' is
ignored on Unix.
CLOSE AFILE
integer file, r;
r = $fcloser(file);
r = $fclosew(file);

The function $fcloser closes a file for input. $fclosew closes a file for output. It returns EOF if
there was an error, otherwise 0. Note that these are not the same as $fclose which closes files
for writing.

30. Difference between task and function?
Function:
A function is unable to enable a task however functions can enable other functions.
A function will carry out its required duty in zero simulation time. ( The program time will
not be incremented during the function routine)
Within a function, no event, delay or timing control statements are permitted
In the invocation of a function their must be at least one argument to be passed.
Functions will only return a single value and can not use either output or inout statements.

Tasks:

Tasks are capable of enabling a function as well as enabling other versions of a Task

Tasks also run with a zero simulation however they can if required be executed in a non zero
simulation time.

Tasks are allowed to contain any of these statements.

A task is allowed to use zero or more arguments which are of type output, input or inout.

A Task is unable to return a value but has the facility to pass multiple values via the output
and inout statements .

31. Difference between inter statement and intra statement delay?
//define register variables
reg a, b, c;

/lintra assignment delays

initial

begin

a=0;¢c=0;

b = #5 a + c; //Take value of a and c at the time=0, evaluate
/la + ¢ and then wait 5 time units to assign value

[11B.Tech 228 DDTV




/lto b.
end

/IEquivalent method with temporary variables and regular delay control
initial

begin

a=0;¢c=0;

temp_ac=a+g;

#5 b =temp_ac; //Take value of a + c at the current time and

/[store it in a temporary variable. Even though a and ¢

/Imight change between 0 and 5,

/Ithe value assigned to b at time 5 is unaffected.

end

32. Difference between $monitor,$display & $strobe?
These commands have the same syntax, and display text on the screen during simulation.
They are much less convenient than waveform display tools like cwaves?. $display and
$strobe display once every time they are executed, whereas $monitor displays every time one
of its parameters changes.
The difference between $display and $strobe is that $strobe displays the parameters at the
very end of the current simulation time unit rather than exactly where it is executed. The
format string is like that in C/C++, and may contain format characters. Format characters
include %d (decimal), %h (hexadecimal), %b (binary), %c (character), %s (string) and %t
(time), %m (hierarchy level). %5d, %5b etc. would give exactly 5 spaces for the number
instead of the space needed. Append b, h, o to the task name to change default format to
binary, octal or hexadecimal.
Syntax:
$display (“format_string”, par_1, par_2, ...);
$strobe (“format_string”, par_1, par_2, ...);
$monitor (“format_string”, par_1, par_2, ...);

33. What is meant by inferring latches,how to avoid it?
Consider the following :
always @(s1 orsO ori0 or il ori2 ori3)
case ({s1, s0})

2'd0 : out = i0;
2'dl:out=il;
2'd2 :out=i2;
endcase

in a case statement if all the possible combinations are not compared and default is also not
specified like in example above a latch will be inferred ,a latch is inferred because to
reproduce the previous value when unknown branch is specified.

For example in above case if {s1,s0}=3, the previous stored value is reproduced for this
storing a latch is inferred.

The same may be observed in IF statement in case an ELSE IF is not specified.

To avoid inferring latches make sure that all the cases are mentioned if not default condition
is provided.

34. Tell me structure of Verilog code you follow?
A good template for your Verilog file is shown below.

/I timescale directive tells the simulator the base units and precision of the simulation

“timescale 1 ns / 10 ps
module name (input and outputs);
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/I parameter declarations

parameter parameter_name = parameter value;

/I Input output declarations

input inl;

input in2; // single bit inputs

output [msb:Isb] out; // a bus output

/I internal signal register type declaration - register types (only assigned within always
statements). reg register variable 1;

reg [msh:Isb] register variable 2;

/l internal signal. net type declaration - (only assigned outside always statements) wire net
variable 1;

/I hierarchy - instantiating another module

reference name instance name (

.pinl (netl),

.pin2 (net2),

:pinn (netn)

);

/I synchronous procedures

always @ (posedge clock)

begin

énd

/I combinatinal procedures

always @ (signall or signal2 or signal3)
begin

end

assign net variable = combinational logic;
endmodule

35. Difference between Verilog and vhdl?
Compilation
VHDL. Multiple design-units (entity/architecture pairs), that reside in the same system file,
may be separately compiled if so desired. However, it is good design practice to keep each
design unit in it's own system file in which case separate compilation should not be an issue.

Verilog. The Verilog language is still rooted in it's native interpretative mode. Compilation is
a means of speeding up simulation, but has not changed the original nature of the language.
As a result care must be taken with both the compilation order of code written in a single file
and the compilation order of multiple files. Simulation results can change by simply changing
the order of compilation.

Data types

VHDL. A multitude of language or user defined data types can be used. This may mean
dedicated conversion functions are needed to convert objects from one type to another. The
choice of which data types to use should be considered wisely, especially enumerated
(abstract) data types. This will make models easier to write, clearer to read and avoid
unnecessary conversion functions that can clutter the code. VHDL may be preferred because
it allows a multitude of language or user defined data types to be used.

Verilog. Compared to VHDL, Verilog data types a re very simple, easy to use and very much
geared towards modeling hardware structure as opposed to abstract hardware modeling.
Unlike VHDL, all data types used in a Verilog model are defined by the Verilog language and
not by the user. There are net data types, for example wire, and a register data type called reg.
A model with a signal whose type is one of the net data types has a corresponding electrical
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wire in the implied modeled circuit. Objects, that is signals, of type reg hold their value over
simulation delta cycles and should not be confused with the modeling of a hardware register.
Verilog may be preferred because of it's simplicity.

Design reusability
VHDL. Procedures and functions may be placed in a package so that they are avail able to
any design-unit that wishes to use them.

Verilog. There is no concept of packages in Verilog. Functions and procedures used within a
model must be defined in the module. To make functions and procedures generally accessible
from different module statements the functions and procedures must be placed in a separate
system file and included using the “include compiler directive.

36. Can you tell me some of system tasks and their purpose?
$display, $displayb, $displayh, $displayo, $write, $writeb, $writeh, $writeo.
The most useful of these is $display. This can be used for displaying strings, expression or
values of variables.
Here are some examples of usage.
$display("Hello oni");
--- output: Hello oni
$display($time) // current simulation time.
--- output: 460
counter = 4'b10;
$display(" The count is %b", counter);
--- output: The count is 0010
$reset resets the simulation back to time 0; $stop halts the simulator and puts it in interactive
mode where the
user can enter commands; $finish exits the simulator back to the operating system

37. Can you list out some of enhancements in Verilog 20017
In earlier version of Verilog ,we use 'or' to specify more than one element in sensitivity list .
In Verilog 2001, we can use comma as shown in the example below.
/I Verilog 2k example for usage of comma
always @ (i1,i2,i3,i4)

Verilog 2001 allows us to use star in sensitive list instead of listing all the variables in RHS of
combo logics . This removes typo mistakes and thus avoids simulation and synthesis
mismatches,

Verilog 2001 allows port direction and data type in the port list of modules as shown in the
example below

module memory (

input r,

input wr,

input [7:0] data_in,

input [3:0] addr,

output [7:0] data_out

38. Write a Verilog code for synchronous and asynchronous reset?
Synchronous reset, synchronous means clock dependent so reset must not be present in
sensitivity disk eg:
always @ (posedge clk)

begin if (reset)
...end
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Asynchronous means clock independent so reset must be present in sensitivity list.
Eg

Always @ (posedge clock or posedge reset)

begin

if (reset)

...end

39. Will case infer priority register if yes how give an example?
yes case can infer priority register depending on coding style
regr;

/I Priority encoded mux,

always @ (a or b or c or select2)
begin

r=c;

case (select2)

2'b00: r=a;

2'b01: r=b;

endcase

end

40. Casex,z difference,which is preferable,why?
CASEZ:
Special version of the case statement which uses a Z logic value to represent don't-care bits.
CASEX:
Special version of the case statement which uses Z or X logic values to represent don't-care
bits.

CASEZ should be used for case statements with wildcard don’t cares, otherwise use of CASE
is required; CASEX should never be used.

This is because:

Don’t cares are not allowed in the "case" statement. Therefore casex or casez are required.
Casex will automatically match any x or z with anything in the case statement. Casez will
only match z’s -- X’s require an absolute match.

41. Given the following Verilog code, what value of ""a" is displayed?
always @(clk) begin
a=0;
a<=1;
$display(a);
end

This is a tricky one! Verilog scheduling semantics basically imply a
four-level deep queue for the current simulation time:

1: Active Events (blocking statements)

2: Inactive Events (#0 delays, etc)

3: Non-Blocking Assign Updates (non-blocking statements)

4: Monitor Events ($display, $monitor, etc).

Since the "a = 0" is an active event, it is scheduled into the 1st "queue”. The "a <= 1"is a non-
blocking event, so it's placed into the 3rd queue. Finally, the display statement is placed into
the 4th queue. Only events in the active queue are completed this sim cycle, so the "a = 0"
happens, and then the display shows a = 0. If we were to look at the value of a in the next sim
cycle, it would show 1.

[11B.Tech 232 DDTV




42. How do you implement the bi-directional ports in Verilog HDL?
module bidirec (oe, clk, inp, outp, bidir);

// Port Declaration
input oe;

input clk;

input [7:0] inp;

output [7:0] outp;

inout [7:0] bidir;

reg [7:0] a;

reg [7:0] b;

assign bidir=oe ?a: 8bZ;
assign outp = b;

/I Always Construct
always @ (posedge clk)
begin

b <= bidir;

a<=inp;

end

endmodule

43. What are Different types of Verilog Simulators ?
There are mainly two types of simulators available.
Event Driven
Cycle Based
Event-based Simulator:

This Digital Logic Simulation method sacrifices performance for rich functionality: every
active signal is calculated for every device it propagates through during a clock cycle. Full
Event-based simulators support 4-28 states; simulation of Behavioral HDL, RTL HDL, gate,
and transistor representations; full timing calculations for all devices; and the full HDL
standard. Event-based simulators are like a Swiss Army knife with many different features
but none are particularly fast.

Cycle Based Simulator:

This is a Digital Logic Simulation method that eliminates unnecessary calculations to achieve
huge performance gains in verifying Boolean logic:

1.) Results are only examined at the end of every clock cycle; and

2.) The digital logic is the only part of the design simulated (no timing calculations). By
limiting the calculations, Cycle based Simulators can provide huge increases in performance
over conventional Event-based simulators.

Cycle based simulators are more like a high speed electric carving knife in comparison
because they focus on a subset of the biggest problem: logic verification.

Cycle based simulators are almost invariably used along with Static Timing verifier to
compensate for the lost timing information coverage.

44. What is Constrained-Random Verification ?
Introduction
As ASIC and system-on-chip (SoC) designs continue to increase in size and complexity, there
is an equal or greater increase in the size of the verification effort required to achieve
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functional coverage goals. This has created a trend in RTL verification techniques to employ
constrained-random verification, which shifts the emphasis from hand-authored tests to
utilization of compute resources. With the corresponding emergence of faster, more complex
bus standards to handle the massive volume of data traffic there has also been a renewed
significance for verification IP to speed the time taken to develop advanced testbench
environments that include randomization of bus traffic.

Directed-Test Methodology

Building a directed verification environment with a comprehensive set of directed tests is
extremely time-consuming and difficult. Since directed tests only cover conditions that have
been anticipated by the verification team, they do a poor job of covering corner cases. This
can lead to costly re-spins or, worse still, missed market windows. Traditionally verification
IP works in a directed-test environment by acting on specific testbench commands such as
read, write or burst to generate transactions for whichever protocol is being tested. This
directed traffic is used to verify that an interface behaves as expected in response to valid
transactions and error conditions. The drawback is that, in this directed methodology, the task
of writing the command code and checking the responses across the full breadth of a protocol
is an overwhelming task. The verification team frequently runs out of time before a mandated
tape-out date, leading to poorly tested interfaces. However, the bigger issue is that directed
tests only test for predicted behavior and it is typically the unforeseen that trips up design
teams and leads to extremely costly bugs found in silicon.

Constrained-Random Verification Methodology

The advent of constrained-random verification gives verification engineers an effective
method to achieve coverage goals faster and also help find corner-case problems. It shifts the
emphasis from writing an enormous number of directed tests to writing a smaller set of
constrained-random scenarios that let the compute resources do the work. Coverage goals are
achieved not by the sheer weight of manual labor required to hand-write directed tests but by
the number of processors that can be utilized to run random seeds. This significantly reduces
the time required to achieve the coverage goals.

Scoreboards are used to verify that data has successfully reached its destination, while
monitors snoop the interfaces to provide coverage information. New or revised constraints
focus verification on the uncovered parts of the design under test. As verification progresses,
the simulation tool identifies the best seeds, which are then retained as regression tests to
create a set of scenarios, constraints, and seeds that provide high coverage of the design.
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(b) Unit Wise Important Questions in DDVHD

UNIT -1

What is Concurrency in Verilog?

Explain briefly about PLI.

Explain Simulation and Synthesis processes.

List out Lexical tokens.

What are the advantages of Verilog over VHDL?
Explain the role of Verilog as HDL.

What are different types of modules in verilog? Explain in detail?
Explain about different levels of design descriptions in detail.
Briefly explain about the following

a) Keywords b) Numbers c) ldentifiers

Briefly explain about the following

a) Logic Values b) Operators c) Strings

Explain in detail about the following

a) Comments b) Data types c) Scalars and Vectors

Explain about simulation and synthesis tools in detail with proper diagrams.

UNIT 11

List out Unary Operators.

Give instantiations of basic and universal logic gates in verilog.

What are tri-state gates? Differentiate them with basic logic gates.

Define delay. Give different types of delays in gate level modeling.

What is meant by concatenation of vectors? Explain its significance in verilog with example.
Give different binary operators in verilog.

Differentiate logical operators and bit wise logical operators with examples.

Explain all gate primitives with their instantiations and truth tables.

a) Explain the design of Flip-flops with gate primitives.

b) Design edge triggered master slave flip-flop using the universal logic gates.

What is strength contention in verilog and how it can be resolved by using wand and wor.
Explain with examples.

Explain net types with examples.

a) Design 2-to-4 line decoder using logic gates.

b) Design 4-bit ALU using data flow modeling.

a) Design 4X1 mux using logic gates and data flow modeling.

Explain the different types of operators in detail.
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UNIT — 11
Short:

Differentiate “initial” and ‘always’ constructs.

What is meant by functional bifurcation?

Explain blocking and non-blocking assignments with one example.
Differentiate conditional statements and loop statements with examples.
Explain about ‘disable’ construct.

Define event in verilog. Give one example.

Differentiate sequential blocks and parallel blocks.

Explain ‘wait” construct with one example.

Differentiate force-release and assign-deassign constructs.

©WoNoO~WDNE

Long:

1. Explain the following with examples.
a) Assighment with delays b) Intra — Assignment delays
c) Delay Assignments d) Zero delay
Explain the design of digital circuit at behavioral level with proper examples.
Design a verilog module and its test bench using ‘initial” and ‘always’ constructs.
4. a) Explain about simulation flow in detail.
b) Explain about multiple always blocks.
5. a) Design a 4X1 mux using case statement.
b) Design an ALU using if-else construct.
6. Design a priority encoder using case statement. Give its test bench and simulation results.
7. Design a 15X8 memory to store multiples of 5 using
(i) repeat (ii) While
8. Design a BCD counter with reset and preset using conditional statements. Give its test bench
and simulation results.

w

UNIT -1V

Short:

=

What are applications of CMOS switch over basic transistor switches?
2. What is the significance of resistive switches in verilog? Give the instantiations of resistive
switches?

3. Give the systems tasks used for display of output?

4. Define UDPs? What is the significance of UDPs in verilog? Give the instantiation of UDP
using one example.

5. Define Compiler directives. Explain its significance in verilog.

6. What is meant by Hierarchical Access in verilog?

7. Define parameters? Give the different parameter used in verilog.

8. Explain the instantiations of switch primitives with strengths and delays.

9. Define strength contention in switch level modeling. Give the method to resolve it.

10. Differentiate pin-to-pin delays and parallel delays.
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Long:

Short:

NG~ wWNE

Long:

ONoG~WNE

Design the following modules in verilog.
(i) CMOS Inverter (i) CMOS NOR gate

(iii) CMOS NAND gate (iv) CMOS switch

Design an EX-OR gate using universal logic gates. Give its verilog module and test bench in

switch level modeling.

Explain the following terms in detail with examples.

a) Bidirectional Switches b) Strength contention with trireg nets
a) Explain How specparam can be used in specify block using one example.

b) What is the significance of pathpulse$ task?

a) Design full adder with path delays.

b) Design a half adder with defparam construct.

Explain file based tasks and functions with examples.

Explain the following in detail using appropriate examples.

a) $timeformat b) “define c) “timescale

a) Design an UDP for 3X1 mux and give its test bench.

b) Design an UDP for edge triggered JK flip-flop. Instantiate the UDP in the verilog module

and test it through test bench. Give the simulation results.

UNIT -V

List the advantages of test benches over waveform editors?

Differentiate sequential circuit testing and combinational circuit testing?

Explain about flip-flop timing.

Explain about Bidirectional memory?

Explain sequential synthesis? What are the different sequential synthesis models in verilog?
Explain Design verification in detail?

Give the benefits of Assertion verification.

What are assertion templates?

Explain about test bench techniques in detail.

Explain about Assertion verification in detail.

Explain assert_change and assert_one_hot using a verilog module.

Explain about state machine coding in detail.

Explain about sequential synthesis in detail with appropriate examples.

What are functional registers? Design universal shift register and up/down counter.
Design LFSR and MISR using verilog.

Design FIFO queue using verilog with read and write signals.
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Internal Examination Question Papers

Hall Ticket No.
Question Paper Code:

CMR COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)
B.TECH V Semester- Il mid Examinations APRIL — 2016

(Regulation: CMRCET-R14)

Subject Name: DIGITAL DESIGN THROUGH VERILOG HDL
Date: .08.2016 Time: Max.Marks:25

PART-A
Answer all TEN questions (Compulsory)
Each question carries ONE mark. 10x1=10M
Define module with one example.
What is concurrency?
What is the difference between simulation and synthesis?

GROUP OF INSTITUTIONS

Give an example for number representation in octal and hexadecimal.
Write the format for buffer instantiation
What are the different net types?
What the different signal strengths associated with nets.
Differentiate between bufifl and bufif0.
. What is behavioral modelling?
10. What is the difference between wire and reg.?
PART-B
Answer any THREE questions. Each question carries FIVE Marks.  3x5=15M
11. Explain in brief, the lexical tokens of language constructs in Verilog.

©Coo~NoOREWNPRE

12. Give the example for 8 input nand gate instantiation.
13. Design a 4X16 decoder using repeated instantiation of 3X8 decoder.

14. Explain how to resolve the contention using wand and wor type nets with appropriate
examples.

15. Give the structure of typical procedural block and explain.
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Hall Ticket No.
Question Paper Code:

2 CMR COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)
B.TECH V Semester- | mid Examinations February 2016
(Regulation: CMRCET-R14)
Subject Name: DIGITAL DESIGN THROUGH VERILOG HDL
Date: .08.2016 Time: Max.Marks:5
Answer all questions. Each question carries one Marks.  01x5=5M
1. Explain PLI, system tasks and functional verification
2. Explain different data types in verilog
3. Design SR, D and clocked SR flip flop and write the test bench for the same.
4. Design an ALU using Data flow modelling style
5. Design a 4 bit up counter in behavioural modelling and write the test bench for

same
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Hall Ticket No.
Question Paper Code:

CMR COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)
B.TECH V Semester- | mid Examinations February 2016

(Regulation: CMRCET-R14)
Subject Name: DIGITAL DESIGN THROUGH VERILOG HDL
Date: .08.2016 Time: Max.Marks:25
PART-A
Answer all TEN questions (Compulsory)
Each question carries ONE mark. 10x1=10M

GROUP OF INSTITUTIONS
EXPLORE TO INVENT

What is continuous assignment.

Define tri0 and tril nets

Design a simple OR gate in Data flow level.

What is functional bifurcation?

Explain about casex and casez statements.

Explain about if and else if construct with example.
Write a short notes on bidirectional gates
Differentiate between rtranifl and rtranifO.

©ooNO R WNPRE

. Explain about feedback model.
10. Write a short notes on combinational circuit testing.

PART-B
Answer any THREE questions. Each question carries FIVE Marks.
03x5=15M
11. Design BCD adder using data flow modeling style and write its test bench

12. Design clocked D flipflop in behavioural modelling style and write its testbench
13. Design 3 input CMOS nand gate using Switch level modeling.

14. Explain path delay with an example and write its test bench.
15. Explain testbench technigques
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ROUP OF INSTITUTIONS

Hall Ticket No.
Question Paper Code:

CMR COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)
B.TECH V Semester- | mid Examinations February 2016

(Regulation: CMRCET-R14)

Subject Name: DIGITAL DESIGN THROUGH VERILOG HDL
Date: .08.2016 Time: Max.Marks:5

Answer all questions. Each question carries one Marks.  01x5=5M
1.(a) Design BCD adder and 4-bit Ring Counter using Data flow modelling .

(b) Differentiate between Inter-assignment and Intra-assignment delays using two different
examples.

2.(a) Design priority encoder using casez statement. Write short note on Simulation flow.

(b)Design D-flip flop with clear and preset facility using assign and de-assign statement .design an
Or-gate using disable construct.

3.(a) Explain forever ,while and force-release construct with examples for each.

(b) Design CMOS NAND ,NOR and NOT gate using Switch level modelling.

4.(a) Design basic Ram cell with neat diagrams. Define bidirectional gates with examples.
(b) Explain module and time related parameters with example for each.

5 (a) Explain about Basic memory concepts.

(b) What are the different Testbench techniques.
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Digital Design

Using
Verilog

INTROBUCTION TOVERILOG:
- HIL
Levelvof design Descripeion

[ ——
Fepcnal Ve atiom

Speen Tk

Progeacemung Langesge irserhee (PLI)
Modsie

St and Syuibesin Toods

Teo Bersbas

LANGUAGE CONSTRUETS AND CONVENTIONS
immauction, Keyowursh. ldentifiers, White Syuace Characsers, Coumsent
Nusbers

S
Lops Valses
et
D Bopes

+ Scalae und N

Paruocten

Operstons.

© Al the circunt Jevel, a switch s the basic element

with which digital eircuits are built

o Switches can be combined o form invert il other

pates at the wext higher level of abstraction

9/23/2017

OBJECTIVES AND OUTCOMES

© Asquire a basic knowledge of the Venlog HDIL
Language constructs and comventions i \erilog

© Hasic Concepts of Verikog HDL like Data Types. System Tasks and
Compaler Directives.

© Define basic terms in HDL
© Kawows Syntax and lesical conventions

& Remembers Data bypes, operators

© Remember testhenches for simulation and verification

o Venlog aumed at providing a functionally tested and a venified

design description for the target FPGA or ASIC

9/23/2017

\Gate Level |

© Al the next hagher level of abstraction,
design is carried oul in terms of basic gates
o All the basic gates are available as ready modules

called ~Primifives”

o]
h—

Data Flow |

o Data flow is the next higher level of abstraction
& All possible operations on signals and variables are

represented here in terms of assignments

y = (ab+cd)
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AVIORAL LEVEL

havioral level constitites the highest level of design
deseription: it 1s essentially at the svstem level itself

With the assignment sibalities, looping construets

s comditional branching possible. the de

deseription essentially looks likea U™ pro

|
i\eﬁlog Language Concepts

FUNCTIONAL VERIFICATIO!

Testing 15 an e

ntial ngredient of the VLS design process as

with any hardware carcuit

o It has iwo dimensions

il = fimenionad fests and donng resrs

& Testing or functional verification is carried out by selting up a

“test beneh”™ for the design

o A number of system tasks are avalable n Venlog
Though used m a &
o Some tasks facilitate control and flow of the tesling process,

m deseription, they are not part of it

2 A set of system funetions add to the flexibility of test benches
They are of three categones
Functions that keep track of the progress of sumulation: time
Funenons 1o convert data or values of vanables from one
format to another

Functions to generate random numbers with speeific
distnbutions

o There are other numerous system tasks and functions

111 B.Tech
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CONCURRENCY

o In an electronic cireuit all the units are to be active and

functiomng concurrently. The voltages and currents in the

different elements n the circuit can change simultaneously. In

turn the logic levels oo can change

> Simulation of such a for concurrency

of operation

> All the activites scheduled at one tme s

smpleted and

then the simulator

SIMULATION AND SYNTHESIS
> The design that is specified and entered as desenbed carlier is
simulated for functionahity and fully debugged
Translation of the debugged design mnto the corresponding
hardware circuit (using  an FPGA or an ASIC) 15 called
svnthesis,”

© The carcuits realized from them are essentially direct

translations of functions. into cirewnt elements.

9/23/2017

i e
PROGRAMMING LANGUAGE INTERFACE
(PLI)

MODULE

v o I ¢ L.
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The ports attached 10 a module can be of three tvpes:

gt ports thi

gh which one pets entry imo the mexdule
output ports through which one exits the module
imout ports: These represent ports through which ane gets entry into the

module or exits the module

All the constructs m Venlog are centred on the module

MODULE SYNTAX

mwdule module_name (port_list):

Input. output. mout declaration

Intermediate variable declarations

Functional Description
tgate / switch / data flow / Behv)

endmadule

LANGUAGE CONSTRUCTS AND
CONVENTIONS IN VERILOG

+ CASE SENSITIVITY
Merilog is o case-sensitive language

o KEYWORDS

e constructs. A kevword

ity 1o be carmied out. mitiated, or terminated

Al kevwords in Merilog are i small letters

IDENTIFIERS

111 B.Tech
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. |
SIMULATION AND SYNTHESIS
TOOLS

TEST BENCH SYNTAX

A test bench 1s HDL code that allows you to provide a
documented. repeatable set of stimuli

> moddule th_module_name

Input. output. mout declaration

Intermediate variable declarations

Stumulus (mitial / always) endmodule

5

9/23/2017

]
WHITE SPACE CHARACTERS ,
COMMENTS
*WHITE SPACE CHARACTERS
o Blanks (b}, tabs (’t). newhnes i'n). and form feed form the

white space characters in Verilog

o COMMENTS
) A single line comment begins with

omultiline comments */*" sigmfies the beginning
comment and “#/7 its end

|
NUMBERS, STRINGS

» NUMBERS
Integer Numbers : the number 15 taken as 32 bits wide
25, 253,253

-8h {4

Real Numbers: Real numbers can be specified i decimal or
seientific nolation

43 432

o STRINGS : A string 15 a sequence of characters enclosed
within double quotes

“This is o string

DDTV




3 Tah i/ 3
LOGIC VALUES
| signifies the | or high or true level
0 signifies the 0 or low or false level
Two addiional levels are also possible designated as x and 2.
X represents an unkiown of an umnitialized valoe, This comesponds to
the don’t care case in logic crcuits

rcpresents - significs a high mpedance state

Supply Drive 7 Strong Diive power supply conncctions supply
G strong

strength -

Pull Drive 5 . Gate & assign ouiput il
strength

Capaciior 4 Weak Size of wireg net capaciton large
Giate & assign "

Capactior i s wes
strength ek

Mediom 5 s a

: 2 Size of frireg net capacitor medium

Capacitos

Small Capacitor 1 Size of trireg net capacitor small

High Impedence 0 Not Applicable b

DIFFERENCES BETWEEN WIRE AND TRI

wire: It represents a simple wire doing an mterconnection

Only one output 15 comnected 1o a wire and 15 diven by that

tr It re

ssents a simple signal line as a wire. Unlike the wire,

a tri can be driven by more than one signal outputs

CONTENTION

O 0N X X D o o

! X I ! U EG T I 1
* x X X X % 0 X ¥ X
z ! X z A 1

X A 0 %
) ) 1 1 | 1 % 1 X 1
X0 x 1 % ¥ X XX % X
z 1 X 1 z 0 1 X 110}

111 B.Tech
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DATA TYPES

o The data handled 1n Verilog fall into two categories
(iiNet data type

(i} ariable data tvpe

The two tvpes differ in the way they are used as well as with

d o therr respective hardware structures,

WIRE |/ TRI WOR WAND ! TRIAND TRIT
TRIOR TR TRIREG — lnfirs a capacitance
SLPPLY1 - For Vid SUPPLYD ~ For Vax

7

9/23/2017

VARIABLE DATA TYPE

A varable 15 an abstraction for a storage device
reg
time

ke

Reg [15:0] memorv[511:0]

an array called “memony™, it has locations

Each location 1s 16 bats wide

SCALARS AND VECTORS

DDTV




PARAMETERS, OPERATORS.
PARAMETERS

All constants can be declared ax parameters at the outset in a
Venlog module

o parameter word_size = 16,
o parameter word_size = 16, mem_size = 236,

OPERATORS

o Unary ~ for example, ~a
© Binary = for example, akh
© Temmary: = for example, a?be

VERILOG MODULE FOR AOI LOGIC
s moduleaoi_goteio.al o2bl o)
Wul a2b1,bZ outpyt o:
umaum al‘nm
92020102
num!inukoll ‘snamaduls

regal. nzal az w)ma
inifics e,

al=g e2=0 bi=k b2=d
#30l=Y; o=l bi=lblsg

end

Inifial #7300

"o=%0, 0l =% ol=%b bl =%b bl=%&
0.0l aZbl '
a0i_gate ggis.al.02.51 52l endmoduls

TRI-STATE GATES

o Four types ate buffers are available in Verilog as

primitives

oo -r

i.
by
£

[R i il < i b
e =

wenar Dt sompteent ot 4

LT
| b

musa g8 o commpiame o
precerg

et ol

i

111 B.Tech

GATE LEVEL MOBELING:

Arvey of teseances o Primives
= Dersgm of Flay - Py e e proméves

GATE LEVEL MODELING |

o All the basic gates are available as “Primitves”™ in Merilog

Gate Mode of instantiation Output portis) Input pon(s)
AND |andgaio. i1, 2, l) o 2.
ok or gr (0, i1, n. o i,
o i,
) W,
0 [
) i
buf gh {01, 02 01.02. 03,
[not gn fof, o2, 03, . .. Ik 01,02,03,

PRIMITI

oand gate [7 - 4 ] o bl

o and gate [7](a[3]. b[3]. ¢[3]).
ate [6] (af2]. B{2). e[2])

gate [3] ia[ 1] b1 ¢[1]).
gate [4] ¢af0]. bO], ¢[0]),

Syntax: and gatelmm : nn](a, b, c);

9/23/2017

9

9/23/2017

PRIMITIVES

o Simple Latch
module sbrbilisb.rb.g.qb).
mput sh.rb;

output g.gb.

nandig.sh.gqb),
mandigh.rb.q).

endmodule

248
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Tari 6
RS FLIP-FLOP MODULE
> module srifis.rg.ohy
i oo S .
npul .1 outpul q.q ol 4 |
]
Wire ssm, = o e
. o ot ‘:": - e
netiss.s)
nandiq.ss.qb).
nand{ gb e
endmodule
[TTITE

A CLOCKED RS FLIP-FLOP MODULE
module seffeplevicpsrg.gb).

" w

. o ol gt ais
mput cp.sr. oulput . |
u . 12
SSTS R L e w | Ea
= o
nad  (ss.sep)
{mreph,
(qss.gb),
(b
endmodule
| SaFr it

DELAYS WITH TRI-STATE GATES

bufifl @ (1, 2, 3)bi(ao, &, c);

Delay for the 0o | transition o

Delay foe the 1 10 0 transition of a0

Delay for the sutput o goto the
hi-z state s < changes from | 100

| e e
MIN, TYPICAL, MAX DELAYS
vand #2:3:4) glia. al, a2y,

J mun tvpical. max delavs

y and #1:2:3, 2:4:6) g2(b0), b1, b2)

> bufif] #(1:2:3, 2:4:6, 3:6:9) g3 (a0, bo, ¢)

owire #(1:2:3)a;

111 B.Tech
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D-LATCH MODULE
> module dlatchien.d.q.qb)
mput deen; output g.qb

wire dd. wire s

not nl{dd.d)

nand {sb.d.en). nand

g2(rb.dd.en)
shrbff fiish.

endmodule

rh.g.qb).

Faie -3t

DELAYS

11

9/23/2017

STRENGTHS AND CONTENTIO
RESOLUTION

Name | TR T O T T
S LT CE I G e

| seo)] so) pwo]|  wes Wiz
T ke

bt (neppiyl, pulio) (o 0
1 t

Strength of 0 state i the sutpul

Logic value
of cutput o

NET CHARGES

Name
Strength [ stongest |

[rorge  [mediva [ami |

[V ]

12
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SIGNAL STRENGTH NAMES AND

WEIGHTS
Signal strength name Strength level
Supply idrive) Stromgest 7
Strong (drive) 3
Pull idrive) 5
Large {capacitance) 4
Weak (drive) 3
Medm (copaitance) 2
Small (capacitance) Weakest |
High impedance [

MODELING AT DATA FLOW
LEVEL
CONTINUOU SIGNMENT STRUCTURES
assign ¢ =a && b,

Combining Assignment and Net Declarations
wire ¢
assignc=a& b,
can he combined as

wire.c=a & b,

o Ci A and 8 h

wire (pulll, strongl) i

gl

OPERATORS

|___ P

UNARY OPERATORS

Opermortype | Symbol | Remarks

Only for scalars
-alars and vecion
& ctars ~ yickls a single bit owput
&
or

111 B.Tech
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L

DATA FLOW MODULE FOR AOI

e , @, b, ¢, d); output g,

wiree, 1.al. g

assigne =q&ib.t=c Al d gl =e| |1 g=-g!
endmodule

modute asid(g. 0.b. ¢, d): outpul a
inputa.b.c. d av—
wil —

Bibiwief=cRBcw
al c— ” e

endmoduls do—1,

s

DELAYS AND CONCATENATION

13
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BINARY OPERATORS

o Anthmetic operators and their symbols

L7 T pr—

> Relanonal operators and ther svmbols

™ St

CONT..

Equality operators and their symbuols

14
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CONT...
o Bil-wise logical operators and their symbols
Operatod 1ype | Sy | Povaible s 1
AND i
on_ 1 W

e e e
i o e gy v

|
'TERNARY OPERATOR
oA?B:C

cassigny =w 7Nz

o Assign d = (I==uadd) ? (a+b) : ((F =sub) ? (a-h)

(

=compl) 7 ~a - ~b;

BEHAVIORAL MODELING:
Indroduction

Operations amd Assignments
¥ ional i

on

Jmatreni Comstract, avx Comstrwct

Assignments with Delays iz Comstiuct
ultiple Abways Blocks

Designs at Hebavioral Level

locking aml NerBlocking Assignaeits
The case statcment

Sumlation Flow

and df-clse

tructs
opstricl, ropvol construct. for loop, the Juabe constrit,
Toup, paralie] blocks, force  construct. Event

ansigar-deasig

while hoop. f

BEHAVIORAL MODELING

o Behavioral level mode]

deseription at an abstract level

o Onig can visualize the circuit in terms of its key
modular functions and their behavior: it can be
desenbed at a functional level itself mstead of
gelling

bogged down with implementation detals.

111 B.Tech
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OPERATOR PRIORITY

© The table brings out the order of precedence. The order of
precedence decides the prionty for sequence of execution and

circuit realization in a ment
Unaey . Tighest
operaton & & provedance
Binary — :
aperator <

iE

Temary Toner
opemions precedance

|

6 The design description at the behavioral level 15 done

through a sequence of assignments

© These are called “procedural assignments’

contrasi ©

flow level

the continuous assignments ol the d

o All the procedural ass

gnments are executed sequentially
n the same order as they appear i the design

deseription

9/23/2017

15

9/23/2017

Design deseription at the behavioral level is done in
terms of procedures of o types:
| description and interlinks of
ied out through a senies of

one mvolves func
funetional unts. Tt
blocks under an “always

- The second concerns simulation — its starting point
steering the simulation Aow, observing the process
vanables. and stopping of the simulation process, all
the: ried out under the “always™ banner. an
“mitral” banner, or th

i be ¢

combin:

1005,

16
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0 A procedure-hlock of either tvpe = mitial or always

— can have a structure shown in Figure

o If a procedural block |
carmned out. it can be spe
nitial #2 a=0),

Iy one assignment 1o be

ed

oas

& More than one procedural assignment is 1o be carried out
1 initial block. All such

assignments are grouped together between “begm”
“end” declarations,

o Every begin declaration must have its associated end
declaration

© begin — end constructs can be nested as many times as
desired

Cieenmisiocks

o module il

o initial

o reg a. b. begin

o a=1b0;

© b= 1'bb

a=%b b=

° Sdisplay (Stume. “display
o #2a=1bl

e end
o nitaal #1008stop, imtial
o begm #2b=1bl. end
-]
-]
~ 0 endmodule B _

wwscoxsaver

© The always process signifies activilies 1o be executed on
an “always basi:

© Iis essential charactenistics are

-Amy behavioral level design deseniption 1s done using an
always block

“The process has to be flagged off by an event or a change
4 nel or 4 reg, Otherwise 1t ends in a stalemate

“The process can have one assignment statement or
multiple assignment statements

Normally the
order they appear.

ments are executed sequentially in the

111 B.Tech

[ED BEGIN - END

9/23/2017

Acset of procedural assignnicals within an initial construct are.
wecuted only Onee

Ty any assignment statement the lefi-hand side has to be o storage

rype of

of variable. The nght-hand side can be a storage type of vanable or

ent (and not a net) 1t can be a reg. integer. or real tvpe

anet

coo

17
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o The alwavs block 15 executed repeatedly and endlessly. It
15 necessary 1o specify a condition or a set of conditions,
which willl steer the system to the execution of the block
Alternately such a flagging-ofl’ can be done by
specifving an event preceded by the svmbol “a™

o ainegedge ¢ik) exveontes the following block at the negative edge of clk

0 ii{posadge elk) - evecunes the follawing block at the positive adye of the
clk

expotles the Following bluck at both the edges of clk

© diporclr)

o a(posedge clkl vr megedge clk2)

@ @ (8o b or €) can also write as 4@ {a or b or €)@ (8. b, € @ (8. boc
¢

eovaree conee 1R

o module coumteruptaclk Ny input clk.
mput[3:0]N;

output[3:0]a;

reg[3:0}a

mitial a=4'bO000,

alwavsa (negedge clky a=(a==N)4'b0000:a+1'b1,

o endmodule

252
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© always =3 b~ a

0 “ilies of a al the 3o 6th. 9th et ns are sampled and assigned to
b

o Initial

o begin

o a= bl

° b= b

o La= 'k,

° 3a=1'bl

o =la=1'b0:

o 22a=1'bl:

° #3a =10

o end

o The “intra-assignment” delay carnies out the assigniment
in twe parts.

o An with an nlr; the form

] A= # dl expression;

© Here the expression is scheduled to be evaluated as
000
s 1t is encountered
© However. the result of the evaluation i assigned 1o
the
right-hand side quantity a after a delay specitied by
dl
Lod

be an infeger or a wonstanl expression

0 always sl

salwavssbp-a+ |

o All assignment within an initial or an alwavs block done
through an equality (*=") operator These are executed
sequentially. Such assignments block the execution of the

[ollowing lot of assignments al any une step. Hence they are

called “blocking assignments

o If the assignments are to be effected concurrently A

facility

citisthortie “Bhobleckibal assgriinainenyaslalmen ookl

assigmment.  The

mamn charactenstic of a ponbloc

assignment 15 that 11s execution is concurrent

o For all the non-blocking assignments in a block. the
right-hand sides are evaluated first. Subsequently the
specified assipnments are scheduled

o What will happen if the followmng statements are
executed

oA==0
eB<=A;

# AL B will swapped

o And
oA=B.
loB=A.

A, B will have same value

111 B.Tech

o Adelay of 0 ns does not really cause any delay
o However, it ensures that the assignment following is
executed [ast in the concerned time slot

oalwavs

o begn a= |,

o #a=0.
o end

o The wait construct makes the simulator wait for the
spectfied expression to be true before proceeding with
the following ar group of

o Its syntax has the form

o wait (alpha) assignment |

o alpha can be a vanable, the value on a net. or an
expression mvolving them

oaclk

owt (¢lk) #2 a= b, the simulator waits for the clock 1o
be high and then assigns b to a

b assigns the value of b 10

when clk changes:

© The principle of Delavs of the mira-assignment fpe operation
is sl o that with Bocking assigmments.

o alwans @faorb)

e £3cl = akb.

© which has a delay

blocking assignment to cl. I aoch
changcs. the alw activated. Three ns later, (adkb) is
cvaluated and assigned w0 ¢l The event “(a or b)” will be checked
for change or trigper again [T & or b changes, all the activities are
frozen for 3 ns. I a or b changes m the interim period. the block is
not activated. Hence the module docs not depict the desired output

o abways @{aorb)
D

© The always block is activated if a or b changes {a & b) is cvaluated
immediately but assigned o €2 only after 3 ns Onlv after the
delaved assignment o ¢2. the event (a or b) checked for change 1 a
o b changes in the intenim penod. the block is not activated

3 ms for

© always @ or b
o 23l adeh,

© The block 1s entered if the value of a or b changes but the

evaluats

1ol a&b and the assiznment 1o €3 take place with a

time delay of 3ns ¥ aor be n the interien period, the

block 15 not activated

© abways @(aor b

oo = =3akb

® repeescsns the best abiemative with time delay: The alvays block i activated
200 b changes. (b} is evaluated immediately snd scheduled for assigament to of
with a delay of § . Without waiting for the assigmment to e effeet (e o the same
time step a8 the entry 1o the block ), control is retirmed to the event control eperater
Further changes 10 or b if amy — are agsin taken copnizance of

253
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n a module: The
associated with

o simple construet for multiple branck
kevwords case. endease. and default «
the case construct

o Format of the case construct is

o Cuse foxpression)

o Refl statementl. Ref2
L] statement Refd

o statcmentd

o

o

o defmult statementd

° o

CASEX AND CASEZ

© The case statement executes a multivay branching where |

every bit of the case expression contributes 10 the

b

ng decision. The statement has two variants
where some of the bits of the case expression can be
selectively treated as don't cares — that 15, ignored

i

don’t eare, "7 character

sez allows 2 1o be treated as
can be wsed in place of 2

© casex treals X or 2 as a don’t care.

o module dee2_dbehio.,
output] 3:0jo;
input] 10]i,
reg[3:0]o,
alwaysa(i)

begin

se(l )

2o=4"hi;
2bilo=4'h]
2bliro=4h2;
bl o=4'hd.
detault b Saisplay e
o=4'hil.

olg o o000 00000

Verilog the parallel proc
the following [IEEE]

o Smmlation tme: Smeudatzon s carmed out in simalation time:

ng 15 structured through

At cvery simulation sicp a mumber of active cvents are sequentially carricd
ot
o The simulatcs maintains an event queve ~ called ihe “Stratificd Event
Cucue” - with an active scgment at its top. The top most cvent i the active
seyment of the quewe b taken up for execotion next,
o The active ovent canbe of an upsdate type or evaluation type The evaluation
event can he for evalmtion of varisbles, values on nets. expressions, i
Refreshing ihe quene and reamanging i constifuics the update <vent
5 Any wpdatimg can <all for 3 subsequeant svaluation and vice versa
o Cimly after all the active events m a b step are executed, the simulation
advamces 1o the et time stop

Completion of the sequence of operations above at any time step significs

| _the paralicl nature of the HIL

The events being camied ol at any instant give fise 10 other v énts

ushrent i
o the evecution process. All suich svents an be grouped into Ui following 5
types:

A
o Tnactive cvents - The imctive cvents arc the cvents lined up for
execution immediately after the execution of the active vents. Events
spesificd with zeto delay are all inactive svents
o O Blocking Assignment Events - Operations and procssses camied out at
prevoizs time steps with restlts to be updated at the cutrent time step are of
thix categ

ve events

> tor Events -~ The Monitor cvents at the current time stop
Samatifior ) Sitrobe - ate 1o be prosessad after the procesing of the active
cvents, inactive cvents, and nonblocking assigent cvents

o T Fulure events - Events scheduled to occur at some fsture simulation
time are the fisture cvents

FLOW.

IFAND IF-ELSE CONSTRUCTS

@ The if construct checks a specific condition and decides
execution based on the result

o assy, el

il (eondition) asségnment2;
o Rssigameni
o Use of the if o

o nssigament]. i condition)
o e | Allermative |

o assigament?
o end

2. clse

o begin /aliemative 2
o assigamentd

o crnd assignments

o module demuxiab.sy,
L] wutput [3:0]a.

o input b. [1:0]s.

o reg[3:0]a:

[} alwavsaib or 5)

o hegin  ifis==2'b0))

L begin a[2b0)=b.
a3 1]=3bZZZ

o

o a[2'd1)=b,

(3]af2al0]=3b227. end
o elseafis==2'b10)
& hcgm_
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ASSIGN-DEASSIGN CONSTRUCT

© The assign - deassign constructs allow contintous assigniments
withm a behavioral block
o alwaysi (posedge clk)a = b:
o At the positive edge of ik the value of b s asaigned 10 8. and a
remuins frozen at that value until the next positive o
Changes m b in the interval are iznored

o As an allernanve. consider the block

o alwaysi(posedge clk) assign ¢ = o,

o Here at the positive edge of ¢l < is assigned the value of d in a
contmuous manner. subsegquent changes m d are duectly reflected as

changes in variable ¢

o Always

o Begin

& arposedge <lk) assign ¢ = d:

o atnegedge clk) deassign ¢

o od

‘The above block: significs two activitics:

1At the positive edge of ek, ©1s assigned the value of d ina
contiions mantir

0 2 Al the following negative edge of elk. the continuous assignment
¢ is removed, subsequent changes fo d are ot passed on o ¢, it is as
thouigh ¢ is clectrically disconnected from d

ement
named block or task. Control nsferred
mediately following the block

st is functionally similar to the break in

fern es
tor the statement

o The disable cons!

C
0 abwaysii{posedge cu
o begin'OR_gate
b 1w
© fouti<0cr =3 Difials)== 1B 1y
o begin  helhI;
o dixible OR_gaic:
end

end

@ The Bool expression 15 cvaluated, 10t s true,

the statement s are executed and expression evaluated
and checked. If the expression evaluates to false. the loop
termunated and the  following statement 1= taken for
execulion

o while(ja) begin

b=1'bl:
aiposedge clk)

o 0000

111 B.Tech

© The repeat consinct 1 used to repeat a specified block a specified
aurber of times.

o repeat (a)

o beg
o assignment ]

& assignment2:

© The quantity o can be a mumber o an expression evaluated 1o a

mumber

o The following block is executed “a™ times. 112" evaluates o 0 oF X
| orz the bl 1 eseeuted

FOR LOOP

o The for loop in Venlog s quite amilar to the for leop n ©
© Ihas four parts. the sequence of execution 15 as follows:
o | Execute assignment |

o2, Evaluake exprssion

o3 If the

tatcn

ypression evaluates to the e state (1), camy out
s

»step S
4. I cxpresnion evaluates o the filse state (0), exit the loop

o5, Execute assignment2. Gio o step 2

o For(assignment]: cxpression. assignment 2)
o statement,

an endless manner 1s
best done with the forever loop (compare with repeat
where the repetition s for a fixed number of times)

always (@ (posedge en)
o forever#2 clk=—clk.

PARALLELBLOCKS

o All the procedural assignments within a begin-end block ane
wxecnted sequentially. The fork-join block is an alicmate one where
all the assignments are camed out concumently {The non=bl g
assignments o can be used for the purpose ). One can use a fork-
Join block within a begin—<nd block or viee versa

255
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INTRODUCTION :

Verification with assertions refers to the use of an assertion language to specify expected behaviour in
a design, and of tools that evaluate the assertions relative to the design under verification.

Assertion-based verification is mostly useful to design and verification engineers who are responsible
for the RTL design of digital blocks and systems. ABV lets design engineers capture verification
information during design. It also enables internal state, data path, and error precondition coverage
analysis.

Simple example of assertion could be a FIFO: whenever a FIFO is full and a write happens, it is
illegal. So a FIFO designer can write an assertion which checks for this condition and asserts failure.

ASSERTION LANGUAGES:

Currently there are multiple ways available for writing assertions as shown below.
» Open Verification Library (OVL).
» Formal Property Language Sugar
» System Verilog Assertions

Most assertions can be written in HDL, but HDL assertions can be lengthy and complicated. This
defeats the purpose of assertions, which is to ensure the correctness of the design. Lengthy, complex
HDL assertions can be hard to create and subject to bugs themselves.

Advantages of using assertions:

e Testing internal points of the design, thus increasing observability of the design.

e Simplifying the diagnosis and detection of bugs by constraining the occurrence of a bug to the
assertion monitor being checked.

e Allowing designers to use the same assertions for both simulation and formal verification.

Assertions in Digital Logic Design - RTL (Verilog, SystemVerilog etc.)

An assertion is a logical state defined to monitor the occurrence of certain events in the logic design
during behavioural simulations. Defining logical states for assertions are implemented as properties
(or rules). Each property can be visualized as a Boolean  Expression.

As long as an assertion holds true no messages are populated in the logic simulation’s. Whenever
assertions fails, simulator produces ‘Error messages’.

Types of Assertions:-
1) Immediate assertion.
2) Concurrent assertions.

[11B.Tech 258 DDTV




Immediate Assertions -
Immediate assertions are executed only once and are mostly implemented within “initial blocks’. Due
to limited use cases its not widely used and limited to simulations.

Example of immediate assertion below:-
assert (A==B) $display(*“Pass™);
else $error(“Fail, reporting Error™);

Failure of assertion is reported by else statement. In “else’ branch we can also include severity of the
failure. The level of severity varies from $info, $warning, $error or $fatal. The $error is the default
severity in SystemVerilog.

Concurrent Assertions —

The concurrent assertions are tied closely to the RTL design to behave inline with the implementation
logic. These assertions are most valuable and widely used. Its useful for both formal verification and
behavioral simulations.

There are two types of concurrent assertions :-
Assertions checking the property only with rising edges of the clock. Assertions which are always
active in time and properties are constantly validated.

Assertions in Digital Logic Design - RTL (Verilog, SystemVerilog etc.)

Example of concurrent assertions:-
assert property (@posedge clk) (fifo_full && fifo_wr);

Implementing assertion monitors:

Assertion monitors address design verification concerns and can be used as follows to increase design
confidence.

Combine assertion monitors to increase the coverage of the design (for example, in interface circuits
and corner cases).

Include assertion monitors when a module has an external interface. In this case, assumptions on the
correct input and output behaviour should be guarded and verified.

Include assertion monitors when interfacing with third party modules, since the designer may not be
familiar with the module description (as in the case of IP cores), or may not completely understand
the module. In these cases, guarding the module with assertion monitors may prevent incorrect use of
the module.

Normally assertions are implemented by the designers to safeguard their design, so they code the
assertions into their RTL. A simple example of an assertion would be: writing into FIFO, when it is
full. Traditionally verification engineers have been using assertions in their verification environments
without knowing that they are assertions. For verification a simple application of assertions would be
checking protocols. Example: expecting the grant of an arbiter to be asserted after one clock cycle and
before two cycles after the assertion of request.
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For using Open Verification Library examples you need Open Verification Library
from Accellera. For running PSL examples you need a simulator that can support PSL

Assertion with OVL :

We need to include the assertion file that we need to use. If in our example we are using
assert_fifo_index.vlib, we use synopsys translate off to prevent the synthesis tools from
reading the code within synopsys translate_off and synopsys translate_on. We want to do
this, as this is simulation code not meant for synthesis. Next we need to enable assertions by
“define OVL_ASSERT_ON. There are many other defines that we can use to control the OVL
assertion; details of each option can be found in the OVL manual.

Assertion in RTL

assert_fifo_index : Prints error whenever there is overflow or underflow error.

assert_always : Prints error whenever a write happens with the fifo full flag set

assert_never : Prints error whenever a read happens with the fifo empty flag set

e assert_increment : Prints error whenever the write pointer increments by a value > 1

OVL Assertion List

> assert_always

The assert_always assertion checker checks the single-bit expression test_expr at each rising
edge of clk to verify whether it evaluates to TRUE.

> assert_always_on_edge

The assert_always on_edge assertion checker checks the single-bit expression
sampling_event for a particular type of transition.

» assert_change
The assert_change assertion checker checks the expression start_event at each rising edge of
clk to determine if it should check for a change in the value of test_expr. If start_event is
sampled TRUE, the checker evaluates test_expr and re-evaluates test_expr at each of the
subsequent num_cks rising edges of clk. If the value of test expr has not been sampled
changed from its start value by the last of the num_cks cycles, the assertion fails.

> assert_cycle_sequence
The assert_cycle_sequence assertion checker checks the expression event_sequence at the
rising edges of clk to identify whether or not the bits in event_sequence assert sequentially on
successive rising edges of clk.

> assert_decrement
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The assert_decrement assertion checker checks the expression test_expr at each rising edge of
clk to determine if its value has changed from the one at the previous rising edge of clk. If so,
the checker verifies that the new value equals the previous one decremented by value. The
checker allows the value of test_expr to wrap, if the total change equals the decrement value.

> assert_even_parity

The assert_even_parity assertion checker checks the expression test_expr at each rising edge
of clk to verify the expression evaluates to a value that has even parity. A value has even
parity if it is O or if the number of bits set to 1 is even.

> assert_fifo_index

The assert_fifo_index assertion checker tracks the numbers of pushes (writes) and pops
(reads) that occur for a FIFO or queue memory structure. This checker does permit
simultaneous pushes/ pops on the queue within the same clock cycle. It ensures the FIFO
never overflows (i.e., too many pushes occur without enough pops) and never underflows
(i.e., too many pops occur without enough pushes).

» assert_increment
The assert_increment assertion checker checks the expression test_expr at each rising edge of
clk to determine if its value has changed from the one at the previous rising edge of clk. If so,
the checker verifies that the new value equals the previous one incremented by value. The
checker allows the value of test_expr to wrap, if the total change equals the increment value.

» assert_never

The assert_never assertion checker checks the single-bit expression test_expr at each rising
edge of clk to verify the expression does not evaluate to TRUE.

> assert_one_hot
The assert_one_hot assertion checker checks the expression test_expr at each rising edge of
clk to verify the expression evaluates to a one-hot value. A one-hot value has exactly one bit
set to 1.

» assert_range
The assert_range assertion checker checks the expression test_expr at each rising edge of clk
to verify the expression falls in the range from min to max, inclusive. The assertion fails if
test_expr< min or max < test_expr.

» assert_one_cold
The assert_one_cold assertion checker checks the expression test_expr at each rising edge of

clk to verify the expression evaluates to a one-cold or inactive state value. A one-cold value
has exactly one bit set to 0.
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