
P a g e | 0

CMR College of Engineering & Technology

Kandlakoya(v), Medchal Road Hyderabad, Telangana, India - 501401,

Telephone: 08418 - 200699. Email: info@cmrcet.ac.in.

Data Structures Lab Manual

COMPUTER SCIENCE & ENGINEERING DEPARTMENT

P a g e | 1

CMRCOLLEGE OF ENGINEERING

&

TECHNOLOGY

KANDLAKOYA, MEDCHAL ROAD, HYDERABAD–501401

Lab Manual

Data Structures Laboratory

(Common to EEE, ECE, CSE, IT, CSE-AI&ML&CSE-Cyber Security)

B. Tech. II Semester

Department of Computer Science and Engineering

2022-2023

P a g e | 2

CMR College of Engineering & Technology

Department of CSE
DATA STRUCTURES LAB

(Common to ECE, CSE, EEE, IT, CSE (AIML)&CSE(Cyber Security))

WEEK NAME OF THE PROGRAM PAGE NO.

1

Write a C program to perform the following operations on the given array

(i) Insert element in specific position into array

(ii) Delete random element from array

(iii) Reverse the array elements

4

2

A) Write a C program to implement Single linked list

(i) Insertion (ii) Deletion (iii) Display

B) Write a C program to implement Circular linked list

(i) Insertion (ii) Deletion (iii) Display

6

3

A) Write a C program to implement Doubly linked list

(i) Insertion (ii) Deletion (iii) Display

B) Write C programs to implement Stack ADT using

(i) Array (ii) Linked List

12

4

A) Write a C program that uses stack operations to convert a given infix

expression in to its postfix equivalent.(Display the role of stack).

 B) Write a C program for Evaluation of postfix expression

19

5

Write C programs to implement Queue ADT using

(i) Arrays (ii) Linked Lists

23

6

Write a C program to implement Binary search tree

(i) Insertion (ii) Deletion (iii) Traversals

26

7

Write a C program to implement binary search tree Non-recursively

traversals

(i) Pre-Order (ii) Post-Order(iii)In-Order

29

8

A) Write a C Program to Check if a Given Binary Tree is an AVL Tree or

Not

B) Write a C program to find height of a Binary tree

C) Write a C program to count the number of leaf nodes in a tree

31

P a g e | 3

9

Write a C program for implementing Graph traversal

(i) DFS (ii) BFS

34

10

A) Write a C program to implement different hash methods

B) Write a C program to implement the following collision resolving

(i) Quadratic probing (ii) Linear Probing

40

11

Write C programs for implementing the following Sorting methods and

display the important steps.

(i) Quick Sort (ii) Heap sort

44

12

Write a C program for implementing pattern matching algorithms

(i) Knuth-Morris-Pratt (ii) Brute Force

48

Reference Books:

1. Ellis Horowitz, Sartaj Sahni, Fundamentals of Data Structures in C, Second Edition Universities

Press.

2. Thomas H. Cormen Charles E. Leiserson, Introduction to Algorithms, PHI Learning Pvt. Ltd.

Third edition.

3. Algorithms, Data Structures, and Problem Solving with C++”, Illustrated Edition by Mark Allen

Weiss, Addison-Wesley Publishing Company.

4. E.Balagurusamy Data Structures Using C, McGraw Hill Education; First edition.

P a g e | 4

Q1: Write a C program to perform the following operations on the given array

(i) Insert element in specific position into array

(ii) Delete random element from array

(iii) Reverse the array elements An array is a collection of items store data contiguous memory locations.

Algorithm:

Step1: Start

Step2: Read number of elements

Step3: Read Array of elements

Step4: Enter your choice to insert/delete/reverse the Given array

Step 5: Stop

Insert element in specific position in to array:

1) First get the element to be inserted, say

2) Then get the position at which this element is to be inserted, say pos

3) Then shift the array elements from this position to one position

forward, and do this for all the other elements next to pos.

4) Insert the element x now at the position pos, as this is now empty.

P a g e | 5

Delete random element from array:

In the delete operation, the element to be deleted is searched using the linear search, and then delete

operation Is performed followed by shifting the elements.

First search ‘x’ in array, then delete that element and shift all elements to one position back.

Reverse the array elements:

1) Inputsizeandelementsinanarray.Storeitinsomevariablesaysizeandarrrespectively.

2) Declareanotherarraythatwillstorereversedarrayelementsoforiginalarraywithsamesize,say

reverse[size].

3) Initialize two variables that will keep track of original and reverse array. Here we will access

a. Original array from last and reverse array from first. Hence, initializer Index=size-

1andrevIndex=0.

4) Run loop fromsize-1to 0 in decremented style .The loop structure should look like while

(arrIndex>=0).

5) In side loop copy original array to reverse array i.e. reverse[revIndex]=arr[arrIndex];.

6) After copy, increment rev Index and decrement arr Index.

7) Finally after loop print reverse array.

P a g e | 6

Q2.WriteaC program to implement Single linked list

Linked List is a linear data structure in which every data item is represented as Node containing two or

more lots.

Single linked list is a sequence of elements in which every element has link to its next element in the

sequence.

In any single linked list, the individual element is called as "Node". Every "Node" contains

two fields, data field and next field. The data field is used to store actual value of the node and

next field is used to store the address of next node in the sequence.

The graphical representation of node in a single linked list is as follows...

Example

Operations on Single Linked List

The following operations are performed on a Single Linked List

 Insertion

 Deletion

 Display

Before we implement actual operations, first we need to setup empty list. First perform the

following steps before implementing actual operations.

Step1- Include all the header files which are used in the program.

Step2-Declare all the user defined functions.

Step3 -Define a Node structure with two members data and next

Step4-Define a Node pointer ‘starts' and set it to NULL.

P a g e | 7

Step5-Implement the main method by displaying operations menu and make

suitable function calls in the main method to perform user selected operation.

 Insertion:

In a single linked list, the insertion operation can be performed in three ways. They are as

follows...

1. Inserting At Beginning of the list

2. Inserting At End of the list

3. Inserting At Specific location in the list

Inserting At Beginning of the list:

We can use the following steps to insert anew node at beginning of the single linked list...

Step1-Create a newNode with given value.

Step2-Check whether list is Empty (start==NULL)

Step3-If it is Empty then, set newNode→next =NULL and start=newNode.

Step4-IfitisNotEmptythen,set newNode→next=startandstart=newNode.

Inserting At End of the list:

We can use the following steps to insert a new node at end of the single linked list...

Step1-Create a new Node with given value and newNode→nextasNULL.

Step2-Check whether list is Empty (start==NULL).

Step3-If it is Empty then, setstart=newNode.

Step4- If it is NotEmpty then defines a node pointer temp and initialize with start.

Step5-Keep moving the temp to its next node until it reaches to the last node in the list

(until temp →next is not equal to NULL).

Step6-Settemp → next=newNode.

P a g e | 8

Inserting at middle of the list:

Step1-Create a new Node with given value

Step2-Checkwhetherlist is Empty (start==NULL)

Step 3 - If it is Empty then, set newNode → next = NULL and start = newNode.

Step4- If it is NotEmpty then defines a node pointer temp and initialize with start.

Step5-Keep moving the temp to its next node until it reachest other node after which

we want to insert the newNode

Step6-Finally,Setp->next=newnode, newnode->next=temp

Deletion:

In a single linked list, the deletion operation can be performed in three ways. They are as follows...

1. Deleting from Beginning of the list

2. Deleting from End of the list

3. Deleting a Specific Node

P a g e | 9

Deleting from Beginning of the list:

We can use the following steps to delete a node from beginning of the single linked list...

Step1-Checkwhetherlist is Empty (start==NULL)

Step2-If it is Empty then, display' List is Empty!!!Deletion is not possible' and

terminate the function.

Step3-Ifit is Not Empty then, define a Node pointer 'temp' and initialize with start.

Step 4 - Check whether list is having only one node (temp →next==NULL)

Step5- If it is TRUE then set start=NULL and delete temp (Setting Empty list conditions)

Step6- If it is FALSE then set start=temp→next, and delete temp (free(temp)).

Deleting from End of the list:

We can use the following steps to delete an odefrom end of the single linked list...

Step1-Checkwhetherlist is Empty(start==NULL)

Step2- If it is Empty then, display 'List is Empty!!!Deletion is not possible' and terminate the

function.

Step 3 - If it is Not Empty then, define two Node pointers 'temp' and'temp1' and

initialize' temp' with start.

Step4 –Check whether list has only one Node(temp→ next ==NULL)

Step5- If it is TRUE. Then, set start=NULL and delete temp. And terminate the

function. (Setting Empty list condition)

Step6- If it is FALSE. Then, set 'temp1=temp 'and move temp to its next node. Repeat

the same until it reaches to the last node in the list.(untiltemp1 →next ==NULL)

Step7-Finally, Set temp1→ next=NULL and delete temp(free(temp)).

P a g e | 10

Deleting a Specific Node from the list:

Step1-Create a new Node with given value

Step2-Checkwhetherlist is Empty(start==NULL)

Step 3 - If it is Empty then, set newNode → next = NULL and start = newNode.

Step4- If it is Not Empty then defines an order pointer temp and initialize with start.

Step5-Keep moving the temp to its next node until it reaches to the node after which

we want to delete the Node

Step6-Finally,Setp->next=temp->next

Step7-deletet emp(free(temp)).

Traversing:

 Assign the address of start pointer to at emp pointer.

 Display the information from the data field of each node.

 The function traverse() is used for traversing and displaying the information stored in the list

from left to right.

P a g e | 11

2B) Write a C program to implement Circular linked list

i) Insertion ii) Deletion. iii) Display

Circular Singly linked list is similar to Single linked list, but the last node of the list contains a pointer o

the first node of the list.

Inserting At End of the list:

We can use the following steps to insert anew node at end of the single linked list...

 Step1-Create a newNode with given value and newNode→next as NULL.

 Step2-Check whether list is Empty (start==NULL).

 Step3-If it is Empty then, set start=new Node.

 Step4- If it is Not Empty then defines an order pointer temp and initialize with start.

 Step5-Keep moving the temp to its next node until it reaches to the last node in

 The list (until temp →next is not equal to (start).

 Step6-Set temp →next =new Node.

 Step7-SetnewNode→next =Start

We can have circular singly linked list as well as circular doubly linked list.

P a g e | 12

Q3.A) Write a C program to implement doubly linked list

i) Insertion ii)Deletion iii)Display

Double linked list is a sequence of elements in which every element has links to its previous

element and next element in the sequence.

Everynodeinadoublelinkedlistcontainsthreefieldsandtheyareshowninthefollowingfigure...

Here,'link1'fieldisusedtostoretheaddressofthepreviousnodeinthesequence,'link2'fieldis used to

store the address of the next node in the sequence and 'data' field is used to store the actual value

of that node.

Example:

Operations on Double Linked List:

In a double linked list, we perform the following operations...

1. Insertion

2. Deletion

3. Display

Insertion:

In a double linked list, the insertion operation can be per formed in three ways as follows...

1. Inserting At Beginning of the list

2. Inserting At End of the list

3. Inserting At Specific location in the list

Inserting at Beginning of the list:

We can use the following steps to insert anew node at beginning of the double linked list...

Step1-Create a newNode with given value and newNode→previous as NULL.

Step2-Check whether list is Empty(start==NULL)

Step3- If it is Empty then,assign NULL to new Node→next and newNode to start.

Step4- If it is notEmpty then, assign start to newNode→nextandnewNodetostart

P a g e | 13

Inserting At End of the list

We can use the following steps to insert anew node at end of the double linked list...

Step1-Create a new Node with given value and newNode→nextasNULL.

Step2-Check whether list is Empty (start==NULL)

Step3-If it is Empty, then assign NULL to new Node→previous and new Node to head.

Step4- If it is not Empty, then, define an ode pointer temp and initialize with head.

Step5-Keep moving the temp to its next node until it reaches to the last node in the list (until temp

→ next is equal to NULL).

Step 6 - Assign new Node to temp → next and temp to new Node→previous

Inserting At Specific location in the list (After a Node)

We can use the following steps to insert a new node after anode in the double linked list...

Step1-Create a newNode with given value.

Step2-Check whether list is Empty(head==NULL)

Step 3 - If it is Empty then, assign NULL to both newNode → previous & newNode →next and set

newNode to head.

Step4- If it is notEmpty then, defines two node pointers temp1&temp2 and initialize

temp1withhead.

Step 5 - Keep moving the temp1 to its next node until it reaches to the node after which we want to insert the

newNode (until temp1 → data is equal to location, here location is then ode value after which we

want to insert the newNode).

Step 6 - Every time check whether temp1 is reached to the last node. If it is reached

tothelastnodethendisplay'Givennodeisnotfoundinthelist!!!Insertion not possible!!!' and terminate

the function. Otherwise move the temp1to next node.

Step 7 – Assign temp1→next to temp2,newNodeto temp→ next,

 temp1tonewNode→previous,temp2 to newNode→ next

newNodetotemp2→previous.

In a Double linked list, the deletion operation can be performed in three ways. They are as follows...

1) Deleting from Beginning of the list

2) Deleting from End of the list

3) Deleting a Specific Node

P a g e | 14

Deleting from Beginning of the list:

We can use the following steps to delete an ode from beginning of the single linked list...

Step1-Check whet her list is Empty (start==NULL)

Step2-If it is Empty then, display 'List is Empty!!!Deletion is not possible' and terminate

the function.

Step3-Ifit is NotEmpty then, define a Node pointer 'temp' and initialize with start.

Step 4 - Check whether list is having only one node (temp → next ==NULL)

 Step 5 - If it is TRUE then set start= NULL and delete temp (Setting Empty list conditions)

Step 6 - If it is FALSE then set start= temp → next, and delete temp (free (temp)).

Deleting from End of the list:

We can use the following steps to delete a node from end of the single linked list...

Step 1 - Check whether list is Empty (start == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the function.

Step 3 - If it is Not Empty then, define two Node pointers 'temp' and 'temp1' and initialize 'temp' with

start.

Step 4 - Check whether list has only one Node (temp → next == NULL)

Step 5 - If it is TRUE. Then, set start = NULL and delete temp. And terminate the function. (Setting

Empty list condition)

Step 6 - If it is FALSE. Then, set 'temp1 = temp ' and move temp to its next node. Repeat the same until

it reaches to the last node in the list. (until temp1 → next == NULL)

Step 7 - Finally, Set temp1 → next = NULL and delete temp (free (temp)).

Deleting a Specific Node from the list:

Step 1 - Create a newNode with given value

Step 2 - Check whether list is Empty (start == NULL)

Step 3 - If it is Empty then, set newNode → next = NULL and start = newNode.

Step 4 - If it is Not Empty then, define a node pointer temp and initialize with start.

Step 5 - Keep moving the temp to its next node until it reaches to the node after which we want to delete

the Node

Step 6-Finally, Set p->next=temp->next temp->next->prev=p

Step 7-delete temp (free (temp)).

P a g e | 15

Traversing:

• Assign the address of start pointer to a temp pointer.

• Display the information from the data field of each node.

• The function traverse () is used for traversing and displaying the information stored in the list

from left to right.

P a g e | 16

3B.i) Write C programs to implement Stack ADT using Array

Stack is a linear data structure.

"A Collection of similar data items in which both insertion and deletion operations are

performed based on LIFO principle".

Example:

If we want to create a stack by inserting 10, 45,12,16,35 and 50. Then 10 becomes the

bottommost element and 50 is the top most element. The last inserted element50 is at Top of the

stack as shown in the image below...

The following operations are performed on the stack...

1. Push (To insert an element on to the stack)

2. Pop (To delete an element from the stack)

3. Display (To display elements of the stack)

Stack data structure can be implemented in two ways. They are as follows...

1. Using Array

2. Using Linked List

When stack is implemented using array, that stack can organize only limited number of elements.

When stack is implemented using linked list, that stack can organize unlimited number of

elements.

Stack Using Arrays:

A stack data structure can be implemented using one dimensional array. But stack implemented

using array stores only fixed number of data values. This implementation is very simple. Just

define a one dimensional array of specific size and insert or delete the values into that array by

using LIFO principle with the help of a variable called 'top'. Initially top is set to -1. Whenever

we want to insert a value into the stack, increment the top value by one and then insert.

Whenever we want to delete a value from the stack, then delete the top value and decrement the

top value by one.

P a g e | 17

Stack Operations using Arrays:

A stack can be implemented using array as follows...

Before implementing actual operations, first follow thebe low steps to create an empty stack.

Step1-Include all the header files which are used in the program and define a constant

'SIZE' with specific value.

Step2-Declare all the functions used in stack implementation.

Step3-Createaonedimensionalarraywithfixed size (int stack[SIZE])

Step4-Definea integer variable 'top' and initialize with '-1'.(int top=-1)

Step5-Inmain method, display menu with list of operations and make suitable function calls to

perform operation selected by the user on the stack.

Push (value)-Inserting value into the stack:

Ina stack, push() is a function used to insert an element into the stack. Ina stack, the new element

is always inserted at top position. Push function takes one integer value as parameter and inserts

that value into the stack. We can use the following steps to push an element on to the stack...

 Step 1-Checkwhetherstack is FULL.(top==SIZE-1)

 Step2-If it is FULL, then display "Stack is FULL!!! Insertion is not possible!!!"

and terminate the function.

 Step3-IfitisNOTFULL, then increment top value by one(top++) and set stack[top]

to value(stack[top] =value).

Pop()-Delete a value from the Stack:

In a stack, pop() is a function used to delete an element from the stack. In a stack, the element is

always deleted from top position. Pop function does not take any value as parameter. We can use

the following steps to pop an element from the stack...

Step1-Check whether stack is EMPTY. (top==-1)

Step 2 - If it is EMPTY, then display "Stack is EMPTY!!! Deletion is not possible!!!"

and terminate the function.

Step3-IfitisNOTEMPTY, then delete stack[top]and decrement top value by one(top--).

P a g e | 18

Display ()-Displays the elements of a Stack:

We can use the following steps to display the elements of a stack...

Step1-Check whether stack is EMPTY. (top==-1)

Step2-If it is EMPTY, then display" Stack is EMPTY!!!" and terminate the

function.

Step3- If it is NOT EMPTY, then define variable 'I 'and initialize with top. Display

stack[i] value and decrement i value by one (i--).

 Step3-Repeat above step until I value becomes '0'.

P a g e | 19

Lab4:

A.Write a C program that uses stack operations to convert a given infix expression in to its

postfix equivalent. (Display the role of stack).

Infix to Postfix Conversion using Stack Data Structure

To convert Infix Expression into Postfix Expression using a stack data structure, we can use the

following steps...

1. Read all the symbols one by one from left to right in the given Infix Expression.

2. If the reading symbol is operand, then directly print it to the result(Output).

3. If the reading symbol is left parenthesis'(',thenPushitontotheStack.

4. If the reading symbol is right parentheses)',then Pop all the contents of stack until

respective left parenthesis is popped and print each popped symbol to the result.

If the reading symbol is operator (+,-,*,/etc.,),then Push it on to the Stack.However,first pop the operators

which are already on the stack that have higher or equal precedence than current operator and print them to

the result

Example:ConsiderthefollowingInfixExpression...

InfixExpression:A+(B*C-(D/E^F)*G)*H,where^isanexponentialoperator.

P a g e | 20

Operand1 Operand2 Operator

4B.Write a C program for Evaluation of postfix expression.

Postfix Expression Evaluation

A postfix expression is a collection of operators and operands in which the operator is placed after the

operands. That means, in a postfix expression the operator follows the operands.

Postfix Expression has following general structure...

Example:

Postfix Expression Evaluation using Stack Data Structure

A postfix expression can be evaluated using the Stack data structure. To evaluate a postfix expression using

Stack data structure we can use the following steps...

1. Read all the symbols one by one from left to right in the given Postfix Expression

2. If the reading symbol is operand, then push it on to the Stack.

3. If the reading symbol is operator (+ , - , * , / etc.,), then perform TWO pop operations and store the two

popped operands in two different variables (operand1 and operand2). Then perform reading symbol

operation using operand1 and operand2 and push result back on to the Stack.

4. Finally! Perform a pop operation and display the popped value as final result.

Example:

P a g e | 21

P a g e | 22

P a g e | 23

Lab5: Write C programs to implement Queue ADT using

i) Arrays ii)Linked Lists

Queue is a linear data structure in which the insertion and deletion operations are performed at two

different ends. In a queue data structure, adding and removing of elements are performed at two

different positions. The insertion is performed at one end and deletion is performed at other end.

In a queue data structure, the insertion operation is performed at a position which is known as

'rear 'and the deletion operation is performed at a position which is known as 'front’. In

Queue data structure, the insertion and deletion operations are performed based on

FIFO(First In First Out) principle.

In a queue data structure, the insertion operation is performed using a function called "enQueue()"

and deletion operation is performed using a function called" deQueue()".

Queue after inserting 25,30, 51, 60and 85.

Operations on a Queue:

The following operations are performed on a queue data structure...

1. enQueue (value)-(To insert an element in to the queue)

2. deQueue()-(To delete an element from the queue)

3. display()-(To display the elements of the queue)

Queue data structure can be implemented in two ways. They are as follows...

1. Using Arrays

2. Using Linked Lists

P a g e | 24

When a queue is implemented using array, that queue can organize only limited number of elements.

When a queue is implemented using linked list, that queue can organize unlimited number of

elements.

Queue Data structure Using Arrays:

A queue data structure can be implemented using one dimensional array. The queue

implemented using array stores only fixed number of data values. The implementation of queue

data structure using array is very simple. Just define a one dimensional array of specific size

and insert or delete the values into that array by using FIFO (First In First Out) principle

with the help of variables 'front' and 'rear'. Initially both 'front' and 'rear' are set to -1.

Whenever, we want to insert a new value into the queue, increment 'rear' value by one and then

insert at that position. Whenever we want to delete a value from the queue, then delete the

element which is at 'front' position and increment 'front' value by one.

Queue Operations using Arrays:

Queue data structure using array can be implemented as follows...

Before we implement actual operations, first follow the below steps to create an empty queue.

Step1- Include all the header files which are used in the program and define a constant 'SIZE'

with specific value.

Step2-Declareall the user defined functions which are used in queue implementation.

Step3- Create a one dimensional array with above defined SIZE (int queue[SIZE])

Step4-Define two integer variables 'front' and 'rear 'and initialize both with '-1'. (int front =-

1, rear= -1)

Step 5 - Then implement main method by displaying menu of operations list and make suitable

function calls to perform operation selected by the user on queue.

Enqueue (value)-Inserting value into the queue:

In a queue data structure, enQueue() is a function used to insert a new element into the queue. In a

queue, the new element is always inserted at rear position. The enQueue() function takes one

integer value as parameter and inserts that value into the queue. We can use the following steps to

insert an element into the queue...

Step1-Check whether queue is FULL.(rear==SIZE-1)

Step2-If it is FULL, then display "Queue is FULL !!! Insertion is not possible!!!" and

terminate the function.

Step3-If it is NOT FULL, then increment rear value by one(rear++) and set

queue[rear]=value.

P a g e | 25

deQueue()-Deleting a value from the Queue:

In a queue data structure, deQueue() is a function used to delete an element from the queue. In a

queue, the element is always deleted from front position. The deQueue() function does not take any

value as parameter. We can use the following steps to delete an element from the queue...

Step1-CheckwhetherqueueisEMPTY.(front==rear)

Step 2 - If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible!!!" and

terminate the function.

Step 3 - If it is NOT EMPTY, then increment the front value by one(front ++). Then display

queue[front] as deleted element. Then

checkwhetherbothfrontandrearareequal(front==rear),ifitTRUE,thenset both front

and rearto'-1'(front=rear=-1).

Display()-Displays the elements of a Queue:

We can use the following steps to display the elements of a queue...

Step1-CheckwhetherqueueisEMPTY.(front==rear)

Step2-IfitisEMPTY,thendisplay"QueueisEMPTY!!!" and terminate the function.

Step3-If it is NOTEMPTY, then define an integer variable 'i' and set 'i=front+1'.

Step4-Display 'queue[i]' value and increment 'i 'value by one (i++). Repeat the same until 'i'

value reaches to rear(i <=rear)

P a g e | 26

6.Program to implement Binary search tree

i) Insertion ii)deletion iii)Traversals

Every Binary Search Tree is a binary tree but all the Binary Trees need not to

be binary search trees.

The following operations are performed on a binary Search tree...

 Search

 Insertion

 Deletion

Search Operation in BST:

In a binary search tree, the search operation is performed with O(logn) time complexity. The

search operation is performed as follows...

Step1:Read the search element from the user

Step2:Compare,the search element with the value of root node in the tree.

Step3:If both are matching, then display "Given node found!!!"and terminate the function

Step4:If both are not matching, then check whether search element is smaller or larger than

that node value.

Step5:If search element is smaller, then continue the search process in left sub tree.

Step6:If search element is larger, then continue the search process in right sub tree.

Step 7: Repeat the same until we found exact element or we completed with a

leaf node

Step8:If we reach to the node with search value, then display "Element is found" and

terminate the function.

Step9:If we reach to a leaf node and it is also not matching, then display "Element not found"

and terminate the function.

P a g e | 27

Insertion Operation in BST:

In a binary search tree, the insertion operation is performed with O(logn) time complexity. In

binary search tree, new node is always inserted as a leaf node.

The insertion operation is performed as follows...

 Step 1:Create a new Node with given value and set its left and right to NULL.

 Step2:Check whether tree is Empty.

 Step3:If the tree is Empty, then set root to new Node.

 Step 4: If the tree is Not Empty, then check whether value of new Node is smaller or

larger than the node (here it is root node).

 Step 5: If new Node is smaller than or equal to the node, then move to its left child. If

new Node is larger than the node, then move to its right child.

 Step 6: Repeat the above step until we reach to a leaf node (e.i., reach to NULL).

 Step7:After reaching a leaf node, then insert the new Node as left child if new Node is

smaller or equal to that leaf else insert it as right child.

Deletion Operation in BST:

In a binary search tree, the deletion operation is performed with O(log n) time complexity.

Deleting a node from Binary search tree has following three cases...

Case1:Deletinga Leaf node(A node with no children)

Case2:Deleting a node with one child

Case3:Deleting a node with two children

Case1: Deleting a leaf node:

We use the following steps to delete a leaf node from BST...

Step1:Find the node to be deleted using search operation

Step2:Delete the node using free function (If it is a leaf) and terminate the

function.

Case2:Deleting a node with one child:

We use the following steps to delete a node with one child from BST...

Step1:Find the node to be deleted using search operation

Step2:If it has only one child, then create a link between its parent and

child nodes.

Step 3: Delete the node using free function and terminate the function.

P a g e | 28

Case3: Deleting a node with two children:

We use the following steps to delete a node with two children from BST...

Step1:Find the node to be deleted using search operation

Step2:Ifithastwochildren,thenfindthelargestnodeinitsleftsubtree (OR)

 The smallest node in its right sub tree.

Step3:Swap both deleting node and node which found in above step.

Step4:Then,check whether deleting node came to case 1 or case 2 else go to Step2

Step5:If it comes to case1, then delete using case1logic.

Step6:If it comes to case2, then delete using case2logic.

Step7:Repeatthesame process until node is deleted from the tree.

Tree Traversals:

In Pre-order the parent node visited first then the left child node and at last the right child node.

InIn-ordertheleftchildnodevisitedfirstthenparentnodeandatlasttherightchildnode.

In Post-order the left child node visited first then the right child node and in last parent node.

Example:

ConstructaBinarySearchTreebyinsertingthefollowingsequenceofnumbers...

10,12,5,4,20,8,7,15and13

P a g e | 29

7. Write a C program to implement binary search tree Non-recursively traversals

(i) Pre-Order

(ii) Post–

Order(iii)In-

Order

Tree traversal is the process of visiting each node in the tree exactly once. Visiting each node in a

graph should be done in a systematic manner. If searcher sultana visit to all the vertices, it is called a

traversal. There are basically three traversal techniques for a binary tree that are,

 Preorder traversal

 Inorder traversal

 Postorder traversal

Preorder traversal:

To traverse a binary tree in preorder, following operations are carried out:

1. Visit the root.

2. Traverse the left sub tree of root.

3. Traverse the right sub tree of root

In-order traversal:

To traverse a binary tree in in-ordertraversal,following operations are carried out:

o Traverse the left most sub tree.

o Visit the root.

o Traverse the right most sub tree.

P a g e | 30

Post-order traversal:

Totraverseabinarytreeinpost-ordertraversal,followingoperationsarecarriedout:

1. Traverse the left sub tree of root.

2. Traverse the right sub tree of root.

3. Visit the root.

P a g e | 31

8(A) Write a C Program to Check if a Given Binary Tree is an AVL Tree or Not

If a binary search tree has a balance factor, then it is an AVL (Adelso-Velskii and

Landis) tree. This means that in an AVL tree the difference between left sub tree and

right sub tree height is at most one.

To check if a Binary tree is balanced we need to check three conditions:

1. The absolute difference between heights of left and right sub trees at any node should be less

than 1.

2. For each node, its left sub tree should be a balanced binary tree.

3. For each node, its right sub tree should be a balanced binary tree.

We will need a function that can calculate the height of the tree. One way to do this is to write a

separate function for calculating the height and call it every time height is needed. This is going to be

computationally inefficient.

The better way to implement this will be returning height in the same function. For each node, we will

return -1if it is not balanced and the height to ift hat node/sub tree if it is balanced.

The algorithm is as follows:

 If node==nullreturn0

 Check left sub tree. If not balancedreturn-1

 Check right sub tree. If not balancedreturn-1

 The absolute between heights of left and right subtrees.Ifit isgreaterthan1return-1.

 If the tree is balanced return height

P a g e | 32

8(B) Write a C program to find height to binary tree

There are two conventions to define the height of a Binary Tree

 Number of nodes on the longest path from the root to the

 deepestnode.

 Number of edges on the longest path from the root to the deepest node.

Start the algorithm by taking the root node as an input. Next, we calculate the height of the left and

right child nodes of the root. In case the root doesn’t have any child node, we return the height

ofthetreeas0.

Recursively call all the nodes from the left and right sub tree of the root node to calculate the height

of a binary tree. Finally, when calculate the height of the left and right sub tree, take the

maximumheightamongbothandaddonetoit.Thenumberreturnbythealgorithmwouldbetheheightoftheb

inary tree.

Procedure Binary tree Height:

If root==NUL Lthen

Return0;

Else

Left Tree height=Binary tree height(Root left) ;

Right Tree height=Binary tree height(RootRight);

Return Max(Left Tree height, Right Tree height)+1;

https://www.baeldung.com/java-recursion

P a g e | 33

8(C Write a C program to count the number of leaf nodes in a tree

 Procedure for count the number of leaf nodes in a tree:

1) If the node is null return0,this is also the base case of our recursive algorithm

2) If a leaf node is encountered the nreturn1

3) Repeat the process with left and right sub tree

4) Return the sum of leaf nodes from both left and right sub tree

An iterative algorithm to get the total number of leaf nodes of binary tree:

The recursive algorithm for counting leaf nodes was pretty easy, so is the iterative algorithm

aswell.Similar to iterative In Order traversal example, we have used a Stack to traverse the

binary tree.

Steps of the iterative algorithm to get a total number of leaf nodes of a binary tree:

1) If the root is null then return zero.

2) Start the count with zero

3) Push the root into Stack

4) Loop until Stack is not empty

5) Pop the last node and push left and right children of the last node if they are not null.

6) Increase the count

At the end of the loop, the count contains the total number of leaf nodes.

http://www.java67.com/2016/09/inorder-traversal-of-binary-tree-java-example.html

P a g e | 34

9A.WriteaC Program to implement Breadth First Search (BFS)

Algorithm for BFS:

Step1:Define a Queue of size total number of vertices in the graph.

Step2:Select any vertex as starting point for traversal. Visit that vertex

and insert it into the Queue.

Step3:VisitalltheadjacentverticesofthevertexwhichisatfrontoftheQueuewhi

chisnotvisited and insert them into the Queue.

Step4:When there is no new vertex to be visit from the vertex at front of

the Queue then delete that vertex from the Queue.

Step5:Repeat step 3and4until queue becomes empty.

Step6:WhenqueuebecomesEmpty,thenproducefinalspanningtreebyremovin

g unused edges from the graph

 Example:

P a g e | 35

P a g e | 36

P a g e | 37

9B.Writea C Program to implement Depth FirstSearch (DFS)

Algorithm:

Step1:DefineaStackofsizetotalnumberofvertices Intergraph.

Step2:Selectanyvertexasstartingpointfortraversal.Visitthatvertexand push it on to the Stack.

Step3:Visitanyoneoftheadjacentvertexofthevertexwhichisattopof the stack which is not visited and pushes it

onto the stack.

Step4:Repeat step3 until there is no new vertex to be visit from the vertex on top of the stack.

Step5:When there is no new vertex to be visit then use backtracking and pop one vertex from the stack.

Step6:Repeats teps3,4and 5 until stack becomes Empty.

Step7:When stack becomes Empty, then produce finals panning tree by removing unused edges from the graph

P a g e | 38

P a g e | 39

P a g e | 40

10. A) Write a c program to implement different hash methods in c

Procedure for to implement different hash methods:

 Hashing is the process of mapping large amount of data item to smaller table with the

help of hashing function.

 A fixed process converts a key to a hash key is known a as Hash Function.

 This function takes a key and maps it to a value of a certain length which is called a Hash

value or Hash.

What is Hash Table?

 Hash table or hash map is a data structure used to store key-value pairs.

 It is a collection of items stored to make it easy to find them later.

 It uses a hash function to compute an index into an array of buckets or slots from

which the desired value can be found.

 It is an array of list where each list is known as bucket.

 It contains value based on the key.

 Hash table is used to implement the map interface and extends Dictionaryc lass.

 Suppose we have integer items {26, 70, 18,31, 54, 93}.One common method of determining a

hash key is the division method of hashing and the formulais :

o Hash Key =Key Value% Number of Slots in the Table

 Division method or reminder method takes an item and divides it by the table size and returns the

remainder as its hash value.

P a g e | 41

Data Item Value% No. of Slots Hash Value

26 26 %10 =6 6

70 70 %10 =0 0

18 18 %10 =8 8

31 31 %10 =1 1

54 54 %10 =4 4

93 93 %10 =3 3

a. Linear Probing

 Take the above example, if we insert next item40inour collection, it would have a hash value

of0 (40 % 10 = 0). But 70 also had a hash value of 0, it becomes a problem. This problem is

called as Collision or Clash. Collision creates a problem for hashing technique.

 Linear probing is used for resolving the collisions in hash table, data structures for

maintaining a collection of key-value pairs. The simplest method is called Linear Probing.

 Formula to compute linear probing is:P=(1 +P)% (MOD)Table_size

For example,

P a g e | 42

Linear probing solves this problem:

P = H(40)44%10=0

Position0 is occupied by 70. so we look elsewhere for a position to store40.

Using Linear Probing:

P= (P + 1) % table-size0 +1 %10 =1

But, position 1is occupied by31, so we look elsewhere for a position to store40.

Using linear probing, we

trynextposition:1+1%10=2Position2 is empty, so 40 is

inserted there

P a g e | 43

Double hashing can be done using:

(hash1(key)+i*hash2(key))%TABLE_SIZE

Herehash1()andhash2()arehashfunctionsandTABL

E_SIZEissizeofhashtable.

(We repeat by increasing collision occurs)

b. Quadratic Probing:

It is also used for resolving the collisions in hash table. We look for i
2
‘thslotini’thiteration.

Let hash(x)be the slot index computed using hash function.

If slot hash(x)%S is full, then we try(hash(x)+1*1)%S

If (hash(x)+1*1)%S is also full, then we try(hash(x)+2*2)%S

If(hash(x)+2*2)%S is also full, then we try (hash(x)+3*3)%S

c. Doublehashingisacollisionresolvingtechnique.Doublehashingusestheideaofapplyingasecondha

shfunctiontokeywhenacollisionoccurs.

First hash function is typically hash1(key)=key%TABLE_SIZE

A popular second hash functionis:hash2(key)=PRIME–(key% PRIME)

Where PRIME is a prime smaller than the TABLE_SIZE.

P a g e | 44

11A.Implementation of Quick Sort in C

Quick sort works in the following procedure:

1. Taking the a logical view in perspective, consider situation where one had to sort the papers

bearing the names of the students, by name. One might use the approaches follows:

2. Select a splitting value, say L.The splitting value is also known as Pivot.

3. Divide the stack of papers into two. A-Land M-Z. It is not necessary that the piles should be equal.

4. Repeat the above two steps with the A-Lpile,splitting it into its significant two halves.And M-

Zpile,splitin to its halves. The process is repeated until the piles are smaller nough to be sorted

easily.

5. Ultimately, the smaller piles can be placed one onto pof the other to produce a fully sorted and

ordered set of papers.

6. The approach used here is recursion at each split to get to the single-element array.

7. At every split, the pile was divided and then the same approach was used for the smaller piles.

8. Due to these features, quick sort is also called as partition exchange sort.

a. An example eight come in handy to understand the concept.

P a g e | 45

P a g e | 46

11B.Implementation Heap Sort in C

The Heap sort algorithm to arrange a list of elements in ascending order Is performed using the following

steps...

Step1-Construct a Binary Tree with given list of Elements.

Step2-Transform the Binary Tree in to Min Heap.

Step3-Delete the root element from Min Heap using Heap if method.

Step4-Put the deleted element into the Sorted list.

Step5-Repeatthesame until Min Heap becomes empty.

Step6 -Display the sorted list.

Note: Heap it is the process of adjusting the tree, to maintain the heap property.

Example:

P a g e | 47

P a g e | 48

12A.Implement brute-force method of string matching in C

The principle of brute-force search is quite simple .Comparing the characters from left to right

continuously (it is crucial because faster approaches work differently). The algorithm checks

whether the actual character in the text matches the give character in the pattern.

The Brute Force algorithm compares the pattern to the text, one character at a time, until un-

matching characters are found.

Brute-force substrings earch works is as follows.

P a g e | 49

Brute-force pseudo-code:

 do

if (text letter == pattern letter)

compare next letter of pattern to next letter of text

else

move pattern down text by one letter

while (entire pattern found or end of text)

P a g e | 50

12. B)Knuth Morris Pratt Pattern Matching Algorithm in C

The Knuth-Morris-Pratt (KMP) string searching algorithm differs from the brute-force algorithm

by keeping track of information gained from previous comparisons.

KMP algorithm is used to find a "Pattern" in a "Text". This algorithm compares character by

character from left to right.But whenever am match occurs, it uses a preprocessed table called

"Prefix Table" to skip characters comparison while matching. Sometimes prefix table is also

known as LPS Table. Here LPS stands for "Longest proper Prefix which is also Suffix".

Steps for Creating LPS Table (Prefix Table)

Step1: Define a one dimensional array with the size equal to the length of the

Pattern.(LPS[size])

Step2: Define variables i &j. Set i =0, j= 1andLPS[0]=0.

Step3:Comparethecharactersat Pattern[i]and Pattern[j].

Step 4:If both are matched then set LPS[j] = i+1 and increment both i & j values by one.Goto

to Step 3.

Step5: If both are not matched then check the value of variable 'i'. If it is '0' then set LPS[j] = 0

and increment 'j' value by one, if it is not '0' then set i = LPS[i-1]. Goto Step3.

Step6: Repeat above steps until all the values of LPS[]arefilled.

P a g e | 51

Example:

P a g e | 52

P a g e | 53

