The relation court on them are garden									
Height (x)	4.6	4.8	5.0	5.2	5.4	5.6	5.8		
Weight	48	51	57	61	65	69	70		

Find the weight of human being having height 5.32 inches using Gauss - backward interpolation formula.

10M 12. A). Evaluate $\int_{0}^{1} \sqrt{1+x^3} dx$ taking h = 0.1 by using Trapezoidal rule and Simpson's rule $1/3^{rd}$. Hence write your observation about the difference between the values obtained by Trapezoidal and Simpson's rules.

(P.T.O..)

- Solve the differential equation $\frac{dy}{dx} = \frac{2xy + e^x}{x^2 + xe^x}$, y(1) = 0 by using Runge Kutta fourth order method and hence evaluate y(1.2), y(1.4).
- 13. A). If w = u(x, y) + i v(x, y) be complex potential for an electric field, 10M if $v(x, y) = x^2 y^2 + x/(x^2 + y)$, then find the expression for u(x, y) by using Milne Thomson method.

OR

- 13. B). Find bilinear transformation which maps the points(-1, 0, 1) into the points (0, i, 3i).
- 14. A). Evaluate $\int_{C}^{z^3 \sin 3z} dz$, where C: |z| = 2 and C: |z| = 1 using Cauchy's integral formula.

OR

- 14. B). Evaluate $\int_{0}^{\infty} \frac{1}{1+x^4} dx$ using Cauchy Residue theorem.
- 15. A). Express the function $f(x) = x^2$ as Fourier series in $[0, 2\pi]$.
- Find the Fourier integral transform of $f(x) = \begin{cases} 1-x^2, |x| \le 1 \\ 0, |x| > 1 \end{cases}$ and hence evaluate $\int_0^\infty \frac{x \cos x \sin x}{x^3} \cos \frac{x}{2} dx.$

2.

CMR COLLEGE OF ENGINEERING & TECHNOLOGY (UGC AUTONOMOUS)

B.Tech III Semester Regular Examinations February-2024

Course Name: NETWORK ANALYSIS AND SYNTHESIS

(Electronics & Communication Engineering)

Date: 07.02.2024 AN

Time: 3 hours

Max.Marks: 60

(Note: Assume suitable data if necessary)

PART-A

Answer all TEN questions (Compulsory)

Each question carries ONE mark.

10x1=10M

- Mention some properties of a cut-set. 1.
 - 1 M If a current leaves the dotted terminal of one coil, the reference polarity of the mutual voltage 1 M
- in the second coil is negative at the dotted terminal of the second coil. Is the statement TRUE/FALSE?
- 3. What is the relationship between bandwidth and quality factor for a RLC circuit? 1 M
- 4. Define selectivity and half-power frequency. 1 M
- 5. Write the relation between Z and Y parameters. 1 M
- 6. Which parameters are closely related to h-parameters? 1 M
- 7. What kind of filter can be used to select a signal of one particular radio station? 1 M
- 8. What is the difference between active filter and passive filter? 1 M
- 9. What is driving point impedance, write its transfer function. 1 M
- 10. What are the poles and zeros of the linear system described by the differential equation: 1 M

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = 2\frac{du}{dt} + 1$$

PART-B

Answer the following. Each question carries TEN Marks.

5x10=50M

i) Find out the incidence matrices for the graph given below.

5M

ii) Draw the graph of the circuit shown below and select a suitable tree to write tie-set matrix.

5M

- 11. B). Drive the relationship between self-inductance (L), mutual inductance (M) and coefficient of coupling (K).
- 12. A). For the circuit, find the node voltages V_A and V_B using node voltage method. The source 10M current is given as $i_s(t) = 10\cos(\omega t)$ A, $\omega = 1000$ rad/s.

- 12. B). A series RLC circuit has the values: R 100, L 0.02 H, C 0.02 F. Calculate frequency of resonance. A variable frequency sinusoidal voltage of value 50 V is applied to the circuit. Find the frequency at which the voltage across L and C is the maximum. Also calculate voltage across L and C at frequency of resonance. Find the maximum current in the circuit.
- 13. A). Determine the y parameters for the given two-port.

OR

 2Ω

13. B). Evaluate V_2/V_S in the given circuit.

10M

10M

14. A). What are attenuators? Explain about T,π,L and Bridge type attenuators.

10M

5M

5M

OR

- 14. B). i) Design a low-pass active filter with a deign impedance of 4 and a cutoff frequency of 500 Hz.
 - ii) Design a high pass filter with a high-frequency deign impedance of 5 and a cutoff frequency of 2 kHz. Use a $0.1~\mu F$ capacitor in your design.
- 15. A). Check whether the following polynomials are Hurwitz or not.

10M

i)
$$F(s) = s^4 + s^3 + 5s^2 + 3s + 4$$

ii)
$$F(s) = s^7 + 2s^6 + 2s^5 + s^4 + 4s^3 + 8s^2 + 8s + 4$$

OR

15. B). Find the first and second Cauer forms of LC networks for the impedance function:

10M

$$Z(s) = \frac{s^4 + 10s^2 + 9}{s^3 + 4s}$$

CMR COLLEGE OF ENGINEERING & TECHNOLOGY

(UGC AUTONOMOUS)
B.Tech III Semester Regular Examinations February-2024

Da	(Electronics & Communication Engineering) ate: 09.02.2024 AN Time: 3 hours Max	.Marks: 60
Paradela	(Note: Assume suitable data if necessary) PART-A Answer all TEN questions (Compulsory)	10x1=10M
1. N	Iention typical values of h parameters in CC configuration.	1 M
2. II	lustrate the effect of bypass capacitors in BJT amplifier.	1 M
3. W	/hy gate junction of FET is always reverse biased?	1 M
4. D	rifferentiate enhance mode and depletion mode of MOSFET.	1 M
5. D	efine Gain Bandwidth product.	1 M
6. Ju	ustify why h parameter model is not suitable to analyze transistor at high frequencies.	1 M
7. C	lassify the various negative feedback amplifiers.	1 M
8. C	ompare positive and negative feedback.	1 M
9. C	ompare RC phase shift and crystal oscillator.	1 M
10. W	hat are the factors that affect the frequency stability of an oscillator?	1 M
An	PART-B aswer the following. Each question carries TEN Marks.	5x10=50M
11.A).	i) In a single stage CB – amplifier circuit, $R_E = 20K$, $R_C = 10K$, $V_{EE} = -20V$, $V_{CC} = R_L = 10K$. Find out Ri, Ro, Ai, Av and power gain in dB. ii) Draw and analyse the AC equivalent circuit of CE amplifier.	
11. B).	OR i) The h-parameters of CE-amplifier are hie = 1100Ω , hre = 2.5×10^{-4} , hfe = 50,	5 N 1
11. 2).	hoe =24 μ A/V and Rs = 1K Ω , RL = 10K Ω . Find out current and voltage gains with	5M th and 5M
	without source resistance, input and output impedances. ii) Define and analyse base width modulation of CB configuration of BJT.	
12. A).	ii) Define and analyse base width modulation of CB configuration of BJT.i) Draw and explain the CS amplifier with current source load. Derive an expression Av.	on for 5M
12. A).	 ii) Define and analyse base width modulation of CB configuration of BJT. i) Draw and explain the CS amplifier with current source load. Derive an expression Av. ii) Draw and explain the MOS small signal model. 	on for 5M 5M
12. A). 12. B).	 ii) Define and analyse base width modulation of CB configuration of BJT. i) Draw and explain the CS amplifier with current source load. Derive an expression Av. ii) Draw and explain the MOS small signal model. OR	5M plifier 5M

13. A).	i) Discuss the MOSFET characteristics in depletion mode.	5M
	ii) Derive the expression for input resistance of a Darlington pair circuit. What are the pros and cons of it.	5M
	OR	
13. B).	frequency response.	5M
	ii) A single stage CE amplifier is measured to have a voltage gain bandwidth fH of 5 MHz with RL=500 Ω . Assume hfe=100, gm=100 mA/V, rbb'=100 Ω , CC=1pF and fT=400 MHz. (i) find the value of source resistance that will give the required bandwidth. (ii) with the value of Rs found in (i), find the mid band voltage gain V0/Vs.	5M
14. A).	increased by a factor if $(1+A\beta)$ with feedback.	5M
	ii) Explain with the support of mathematical expressions, how the negative feedback in amplifiers increases amplifier bandwidth and reduces distortion in amplifiers.	5M
14.70	OR	
14. B).	i) Interpret current shunt and voltage shunt feedback amplifiers.	5M
	ii) An amplifier requires an input signal of 60mV to produce a certain output with negative feedback to get the same output the required signal is 0.5V. The voltage gain with feedback is 90. Find the open loop gain and feedback factor.	5M
15. A).	i) Derive the expression for frequency of oscillation of RC phase-shift oscillator and mention its significance.	5M
	ii) Draw and explain the operation of Colpitt's oscillator and elaborate its applications. OR	5M
15. B).	i) Explain the principle of operation of the Wein bridge oscillator. Elaborate its applications.	5M
	ii) In a transistorized Hartley oscillator, the two inductances are $2mH$ and $20\mu H$ while the frequency is to be changed from 950KHZ to 2050KHZ. Calculate the range over which the capacitor is to be varied.	5M

I	H.T No:						R22	2	Cor	urse Code:	A404302	
	CMR IXVIDAL TO INVEN		В	.Tech II	(U) Semeste	GC AUT r Regula	ONOMO r Exami	OUS) nations F	ebruary-	OLOGY 2024 OCESSES	·	
				(Electi		c Comm	nunicati		neering)		
_	Date: 12	Date: 12.02.2024 AN Time: 3 hours (Note: Assume suitable data if necessary)									Max.Marks: 60	
				(I	101C. A55		able data RT-A	ii necess	ary)			
				A	nswer all				ory)		40 4 407 5	
					Each qu	estion ca	rries ON	E mark.			10x1=10M	
1.	Write th	ne con	ditions	for a fun	ction to b	e a rando	m variabl	e.			1 M	
2.	Define	proba	bility w	ith an exa	ample.						1 M	
3.	Write s	nort n	otes on	Chebych	ev's inequ	uality.					1 M	
4.	Define	Chara	cteristic	c function	and pres	ent gener	ation of n	noments ı	ising it.		1 M	
5.	State ce	ntral	limit th	eorem for	the case	of equal	distributio	ns.			1 M	
6.	Write th	ie pro	perties	of jointly	Gaussian	random	variables.				1 M	
7.	What is	a WS	SS rand	om proce	ss?						1 M	
8.	Write s	Write short notes on Gaussian random process.								1 M		
9.			_	-	wer specti	al densit	y?				1 M	
10.	Write s	nort n	otes on	SNR.							1 M	
						PA	RT-B					
_	Answer	the fo	ollowing	g. Each q	uestion c			S.			5x10=50M	
11.A). Wri	te abo	out the I	Probabilit	y axioms'	? Explain	with exa	nples			10M	
						C	R					
11. B	8). A ra	ındon	ı variab	le X has	the follow	wing prol	bability fi	ınction, tl	hen find a) K, b) the	mean 10M	
	and	(c) P((0 < X <	< 5).								
	77		T ₀			1 -	 	T _			ı	
	X		0	1	2	3	4	5	6	7		
	PC	ζ=x)	0	k	2k	2k	3k	K ²	2k ²	7k ² +k		
	<u> </u>						:					
12. A	.). Obta	ain th	e mome	nt genera	ting func	tion of a	uniformly	distribut	ed randon	ı variable.	10M	
			٠	_	_		R					
12. B). Obta	in the	e varian	ce of Gai	ıssian ran	dom vari	able.				10M	

Define autocorrelation function of a random process. Write properties of auto correlation function of a WSS process and prove any three of them.

OR

13. B). Classify random processes and explain.

13. A).

10M

10M

14. A).	Derive the relationship between cross-power spectrum and cross-correlation function.	10M
	OR	
14. B).	Obtain the average power in the random process $X(t) = A\cos(\omega_0 t + 1)$ is a random variable uniformly distributed in the range0 are real constants and $(0, 2\pi)$.	10M
15. A).	Write in detail the procedure of Shannon-fanno coding scheme.	10M
	OR	
15. B).	Find out the Huffman encoding of the following message:	10M
	Message X1 X2 X3 X4 X5 X6	101/1
	Probability 0.4 0.32 0.08 0.08 0.08 0.04	

CMR COLLEGE OF ENGINEERING & TECHNOLOGY

	(UGC AUTONOMOUS)	
	B.Tech III Semester Regular Examinations February-2024	
,	Course Name: SIGNALS & SYSTEMS (Electronics & Communication For its and its a	
]	(Electronics & Communication Engineering) Date: 14.02.2024 AN Time: 3 hours Max.Ma	wka 60
-	(Note: Assume suitable data if necessary)	irks: 00
	PART-A	
	Answer all TEN questions (Compulsory) Each question carries ONE mark. 10x	1=10M
1.	Define signal.	1 M
2.	Define unit step function.	1 M
3.	Define Hilbert transform.	1 M
4.	What is the advantage of Fourier transform.	1 M
5.	What is step response.	1 M
6.	Define correction of signals.	1 M
7.	What is the Laplace Transform of impulse signal.	1 M
8.	Define inverse Z-Transform.	
9.	What is aliasing.	1 M
	Define parsevals theorem.	1 M
		1 M
	PART-B	
<u>A</u>	Answer the following. Each question carries TEN Marks. 5x10	0=50M
11.A)	. Describe the concept of signal approximation using orthogonal functions and derive mean square error.	10M
	OR	
11. B)	Explain the classification signals with example.	10M
12. A)	The state of the s	10M
	i) Dirichlet conditions ii) Trigonometric Fourier series iii) Exponential Fourier series.	10101
10 D)	OR	
12. B)	tameterm of the following.	10M
	(i) $\cos \omega 0 t$ u(t) (ii) $x(t)=e^{-a t }$ (iii) Gate function (iv) Impulse function	
13. A)	. Explain Ideal LPF, HPF and BPF characteristics with neat sketches and relevant equations.	10M
10 75	OR	
13. B).	Consider a causal LTI system with frequency response $H(\omega)=1/4+j\omega$, for a input $x(t)$, the system is observed to produce the output $y(t)=e^{-2t}u(t)-e^{-4t}u(t)$. Find the input $x(t)$.	10M

14. A).	Discuss the following.	402.5
	i) ROC and Properties ROC of Laplace Transform ii) Relation between FT and LT	10M
14 D)	OR	
14. B).	Find the Z-transform and ROC for the following sequences. i) $x(n)=a^n u(n)$ ii) $x(n)=-b^n u(-n-1)$	10M
15. A).	State and Prove Sampling theorem for band limited signals using graphical and analytical methods.	10M
15 5	OR	
15. B).	Discuss the following:	103.4
	i) Auto correlation and cross correlation ii) Energy Density spectrum	10M
